
2024/05/06 18:16 1/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

DATA ANALYTICS REFERENCE DOCUMENT

Document Title: 46887 - Computational Thinking with Algorithms

Document No.: 1548328636

Author(s): Rita Raher, Gerhard van der Linde

Contributor(s):

REVISION HISTORY

Revision Details of
Modification(s)

Reason for
modification Date By

0 Draft release 46887 Module summary
reference page

2019/01/24
11:17

Gerhard van
der Linde

46887 - Thinking with Algorithms

Module learning outcomes

On completion of this module the learner will/should be able to

Apply structured methodologies to problem solving in computing.1.
Design algorithms to solve computational problems.2.
Critically evaluate and assess the performance of algorithms.3.
Translate real-world problems into computational problems4.

Indicative Syllabus

Introduction to Computational Thinking and Algorithms
Analysis of Algorithms
Designing and Testing Algorithms
Sorting Algorithms
Searching Algorithms
Graph Algorithms
Critique and Evaluation of Real World Implementations

http://www.hdip-data-analytics.com/doku.php?id=modules:46887&do=revisions

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

External Resources & Further Reading

Websites:

Dictionary of Algorithms and Data Structures: https://xlinux.nist.gov/dads/

Videos:

What on Earth is Recursion? Computerphile, 2014. https://www.youtube.com/watch?v=Mv9NEXX1VHc
Programming Loops vs Recursion. Computerphile, 2017. https://www.youtube.com/watch?v=HXNhEYqFo0o
XoaX.net Video tutorials on Algorithms, covering Complexity, Sorting and Searching.
http://xoax.net/comp_sci/crs/algorithms/index.php
Visualization of 24 sorting algorithms in 2 minutes. Viktor Bohush, 2016.
https://www.youtube.com/watch?v=BeoCbJPuvSE

Books:

Harel D. and Feldman Y. (2012). Algorithmics - The Spirit of Computing (3rd Edition). Springer.
Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.
Goodrich M.T. and Tamassia R. (2014). Data Structures and Algorithms in Java (6th edition). John Wiley & Sons Inc.
Cormen T.H. (2013). Algorithms Unlocked. MIT Press.
Cormen T.H., Leiserson C.E., Rivest R.L. and Stein C. (2009). Introduction to Algorithms (3rd Edition). MIT Press.
MacCormick J. (2013). Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers.
Princeton University Press.

Documentaries:

The Secret Rules of Modern Living: Algorithms. BBC Four, first broadcast on September 24 2015.
The Wall Street Code. vpro backlight, 2013. https://www.youtube.com/watch?v=kFQJNeQDDHA

Papers:

Furia C. A., Meyer B. and Velder S. (2014). Loop invariants: analysis, classification, and examples. ACM Computing
Surveys. vol. 46, no. 3. http://se.ethz.ch/~meyer/publications/methodology/invariants.pdf

Week 1 - Introduction

01 Introduction

01 Intrduction

02 Review of Programming and Mathematical Concepts

:02 Review of Programming and Mathematical Concepts

https://xlinux.nist.gov/dads/
https://www.youtube.com/watch?v=Mv9NEXX1VHc
https://www.youtube.com/watch?v=HXNhEYqFo0o
http://xoax.net/comp_sci/crs/algorithms/index.php
https://www.youtube.com/watch?v=BeoCbJPuvSE
http://www.hdip-data-analytics.com/_media/resources/pdf/algorithmics-the_spirit_of_computing_3rd_by_david_harel.pdf
http://www.hdip-data-analytics.com/_media/resources/pdf/algorithms_nutshell_.pdf
http://www.hdip-data-analytics.com/_media/resources/pdf/data_structures_and_algorithms_in_python_pdfdrive.com_.pdf
http://www.hdip-data-analytics.com/_media/resources/pdf/algorithms_unlocked.pdf
http://www.hdip-data-analytics.com/_media/resources/pdf/introduction_to_algorithms_-_3rd_edition.pdf
https://www.youtube.com/watch?v=kFQJNeQDDHA
http://se.ethz.ch/~meyer/publications/methodology/invariants.pdf
http://www.hdip-data-analytics.com/_media/modules/46887/01_introduction.pdf
http://www.hdip-data-analytics.com/_media/modules/46887/02_review_of_programming_and_mathematical_concepts.pdf

2024/05/06 18:16 3/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Mathematical operators

Operator Description Examples
+ Additive operator (also string concatenation) 2 + 1 = 3 “abc” + “_” + 123 = “abc_123”

- Subtraction operator 25 – 12 = 13

* Multiplication operator 2 * 25 = 50

/ Division operator 35 / 5 = 7

% Remainder operator 35 % 5 = 0, 36 % 5 = 1

Order of operations - BEMDAS

Brackets
exponents (power)
Multiplication (multiplication and division and remainder)
Division
Addition
Subtraction

Exponents

indicate that a quantity is to be multiplies by itself some number of times

Variables

A variable is simply a storage location and associated name which can use to store some information for later use

Type of variables

Integer
floating
string

Data Types

Numeric data
integers (whole numbers) e.g 1, 3, -123
floating point, i.e real numbers e.g 2.12, 32.23

Character data
!, 4, K, abababa
string data type
enclosed in quotes, e.g “the quick brown fox”

Boolena: true or false

Strongly and weak typed

Programming languages are often classified as being either strongly typed or weakly typed
strongly types languages will generate an error or refuse to compile if the argument passed to a function does not
closely match the expected type
weak typed languages may produce unpredicted results or may perform implicit type conversion if the argument
passed to a function does not match the expected type.

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Common operators

Operator Description Examples
= Assignment operator int number = 23; string myWord = “apple”;

++ Increment operator; increments a value by 1 int number = 23; number++;
System.out.println(number); prints 24

– Decrement operator; decrements a value by
1

int number = 23; number–;
System.out.println(number); prints 22

+= Assignment (shorthand for number =
number + value)

int number = 23; number += 2;
System.out.println(number); prints 25

-= Assignment (shorthand for number =
number - value)

int number = 23; number -= 2;
System.out.println(number); prints 21

== equality, equal 2==1 false

!= equality, not equal 2!=1 true

&& Logical AND 2==1 && 1==1 false

|| Logical OR 2==1 || 1==1 true

! inverts the value of the Boolean !success

> Relational, greater than

>= Relational, greater than or equal to

< Relational, less than

⇐ Relational, less than or equal to

Functions

A function is a block of code designed to perform a particular task
A function is executed when “something” invokes it (calls it)

Control structures

sequential
selection
Iteration

Sequential

Unordered List Itemstatements are executed line by line in the order the appear

Selection

allows different blocks of code to be executed based on some condition
Examples: if, if/else if/else, switch

Iteration

repeatedly execute a series of statements as long as the condition stated in parenthesis is true
for loops, while loops, do/while loops

2024/05/06 18:16 5/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Data structure

array
list
cars = [“Ford”, “Volvo”, “BMW”]

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Week 2 - Analysing Algorithms - Part 1

Analysing Algorithms - Part 1

03 Analysing Algorithms Part 1

Roadmap

Features of an algorithm
Algorithmic efficiency
Performance & complexity
Orders of magnitude & complexity
Best, average & worst cases

Recap

An algorithm is a process or set of rules to be followed in calculations or other problem-solving operations, especially
by a computer (Oxford English Dictionary)
Algorithms can be thought of like a “recipe” or set of instructions to be followed to achieve the desired outcome
Many different algorithms could be designed to achieve a similar task

What criteria should we take into account?
How should we compare different algorithms, and decide which is most appropriate for our use case?

Features of a well-designed algorithm

Input: An algorithm has zero or more well-defined inputs, i.e data which are given to it initially before the algorithm
begins
Output: An algorithm has one or more well-defined outputs i.e data which is produced after the algorithm has
completed its task
Finiteness: An algorithm must always terminate after a finite number of steps
Unambiguous: Each step of an algorithm must be precisely defined; the actions to be carried out must be rigorously
and unambiguously specified for each case
Correctness: The algorithm should consistently provide a correct solution (or a solution which is within an
acceptable margin of error)
Feasibility: It should be feasible to execute the algorithm using the available computational resources
Efficiency: The algorithm should complete its task in an acceptable amount of time

Efficiency

Different algorithms have varying space and time efficiency
E.g. there are several commonly used sorting algorithms, each with varying levels of efficiency
All algorithms are not created equal!

Time efficiency considers the time or number of operations required for the computer takes to run a program (or
algorithm in our case)
Space efficiency considers the amount of memory or storage the computer needs to run a program/algorithm
In this module we will focus on time efficiency

Analysing efficiency

2024/05/06 18:16 7/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

There are two options for analysing algorithmic efficiency:
A priori analysis – Evaluating efficiency from a theoretical perspective. This type of analysis removes the
effect of implementation details (e.g. processor/system architecture). The relative efficiency of algorithms is
analysed by comparing their order of growth. Measure of complexity.
A posteriori analysis – Evaluating efficiency empirically. Algorithms which are to be compared are
implemented and run on a target platform. The relative efficiency of algorithms is analysed by comparing
actual measurements collected during experimentation. Measure of performance.

Complexity

In general, complexity measures an algorithm’s efficiency with respect to internal factors, such as the time needed to
run an algorithm
External Factors (not related to complexity):

Size of the input of the algorithm
Speed of the computer
Quality of the compiler

Performance vs. complexity

It is important to differentiate between:

Performance: how much time/memory/disk/… is actually used when a program is run. This depends on the
computer, compiler, etc. as well as the code
Complexity: how do the resource requirements of a program or algorithm scale, i.e., what happens as the size of the
problem being solved or input dataset gets larger?

Note that complexity affects performance but not the other way around

Note that algorithms are platform independent
i.e. any algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an
arbitrary operating system
Therefore, empirical comparisons of algorithm complexity are of limited use if we wish to draw general conclusions
about the relative performance of different algorithms, as the results obtained are highly dependent on the specific
platform which is used
We need a way to compare the complexity of algorithms that is also platform independent
Can analyse complexity mathematically

Comparing complexity

We can compare algorithms by evaluating their running time complexity on input data of size n
Standard methodology developed over the past half-century for comparing algorithms
Can determine which algorithms scale well to solve problems of a nontrivial size, by evaluating the complexity the
algorithm in relation to the size n of the provided input
Typically, algorithmic complexity falls into one of a number families (i.e. the growth in its execution time with respect
to increasing input size n is of a certain order)
Memory or storage requirements of an algorithm could also be evaluated in this manner

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Orders of magnitude

Order of Magnitude is a mathematical term which basically tells the difference
between classes of numbers
Think of the difference between a room with 10 people, and the same room
with 100 people. These are different orders of magnitude
However, the difference between a room with 100 people and the same room
with 101 people is barely noticeable. These are of the same order of magnitude
How many gumballs in this gumball machine?
If we guess 200, that’s probably pretty close
Whereas a guess of 10,000 would be way off

Complexity families

We will use the following classifications for order of growth (listed by decreasing efficiency, with the most efficient at
the top):

Constant
Logarithmic (log(�))
Sublinear • Linear (�)
� log(�)
Polynomial (e.g. �2, �3, �4, etc.)
Exponential

Evaluating complexity

When evaluating the complexity of an algorithm, keep in mind that you must identify the most expensive
computation within an algorithm to determine its classification
For example, consider an algorithm that is subdivided into two tasks, a task classified as linear followed by a task
classified as quadratic. The overall performance of the algorithm must therefore be classified as quadratic

Best, average and worst cases

As well as the size n of the input, the characteristics of the data in the input set may also have an effect on the time
which an algorithm takes to run

2024/05/06 18:16 9/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

There could be many, many instances of size n which would be valid as input; it may be possible to group these
instances into classes with broadly similar features
Some algorithm “A” may be most efficient overall when solving a given problem. However, it is possible that another
algorithm “B” may in fact outperform “A” when solving particular instances of the same problem
The conclusion to draw is that for many problems, no single algorithm exists which is optimal for every possible input
Therefore, choosing an algorithm depends on understanding the problem being solved and the underlying probability
distribution of the instances likely to be treated, as well as the behaviour of the algorithms being considered.

Worst case: Defines a class of input instances for which an algorithm exhibits its worst runtime behaviour. Instead
of trying to identify the specific input, algorithm designers typically describe properties of the input that prevent an
algorithm from running efficiently.
Average case: Defines the expected behaviour when executing the algorithm on random input instances. While
some input problems will require greater time to complete because of some special cases, the vast majority of input
problems will not. This measure describes the expectation an average user of the algorithm should have.
Best case: Defines a class of input instances for which an algorithm exhibits its best runtime behaviour. For these
input instances, the algorithm does the least work. In reality, the best case rarely occurs.

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Week 3 - Analysing Algorithms Part 2

Analysing Algorithms Part 2

Analysing Algorithms Part 2

Roadmap

Review of key concepts
Complexity
Orders of growth
Best, average & worst cases

Asymptotic notation
O (Big O)
Ω (omega)
Θ (theta)

Evaluating complexity
Examples

Review of complexity

Complexity measures the efficiency of an algorithm’s design, eliminating the effects of platform-specific
implementation details (e.g. CPU or complier design)
We can compare the relative efficiency of algorithms by evaluating their running time complexity on input data of
size n (memory or storage requirements of an algorithm could also be evaluated in this manner)
E.g. how much longer will an algorithm take to execute if we input a list of 1000 elements instead of 10 elements?
Standard methodology developed over the past half-century for comparing algorithms
Can determine which algorithms scale well to solve problems of a nontrivial size, by evaluating the complexity the
algorithm in relation to the size n of the provided input
Typically, algorithmic complexity falls into one of a number families (i.e. the growth in its execution time with respect
to increasing input size n is of a certain order). The effect of higher order growth functions becomes more significant
as the size n of the input set is increased

2024/05/06 18:16 11/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Comparing growth functions
value of
<m>n</m> constant <m>log

n</m> <m>n</m>(linear) <m>n log
n</m>(linearithmic) <m>n 2</m>(quadratic) <m>n 3</m>(cubic) <m>2 n</m>(exponential)

8 1 3 8 24 64 512 256

16 1 4 16 64 256 4096 65536

32 1 5 32 160 1024 32768 4294967296

64 1 6 64 384 4096 262144 1.84467E+19

128 1 7 128 896 16384 2097152 3.40282E+38

256 1 8 256 2048 65536 16777216 1.15792E+77

512 1 9 512 4608 262144 134217728 1.3408E+154

Best, worst and average cases

As well as the size n of the input, the actual data that is input may also have an effect on the time which an algorithm
takes to run
There could be many, many instances of size n which would be valid as input; it may be possible to group these
instances into classes with broadly similar features
For many problems, no single algorithm exists which is optimal for every possible input instance
Therefore, choosing an algorithm depends on understanding the problem being solved and the underlying probability
distribution of the instances likely to be encountered, as well as the behaviour of the algorithms being considered
By knowing the performance of an algorithm under each of these cases, you can judge whether an algorithm is
appropriate to use in your specific situation

Worst case: Defines a class of input instances for which an algorithm exhibits its worst runtime behaviour. Instead
of trying to identify the specific input, algorithm designers typically describe properties of the input that prevent an
algorithm from running efficiently.
Average case: Defines the expected behaviour when executing the algorithm on random input instances. While
some input problems will require greater time to complete because of some special cases, the vast majority of input
problems will not. This measure describes the expectation an average user of the algorithm should have.
Best case: Defines a class of input instances for which an algorithm exhibits its best runtime behaviour. For these
input instances, the algorithm does the least work. In reality, the best case rarely occurs.

Worst case

For any particular value of n, the number of operations or work done by an algorithm may vary dramatically over all
the instances of size n
For a given algorithm and a given value n, the worst-case execution time is the maximum execution time, where the

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

maximum is taken over all instances of size n
We are interested in the worst-case behaviour of an algorithm because it often is the easiest case to analyse
It also explains how slow the program could be in any situation, and provides a lower bound on possible performance
Good idea to consider worst case if guarantees are required for the maximum possible running time for a given n
Not possible to find every worst-case input instance, but sample (near) worst-case instances can be crafted given the
algorithm’s description

Big O notation

Big O notation (with a capital latin letter O, not a zero) is a symbolism used in complexity theory, mathematics and
computer science to describe the asymptotic behaviours of functions
In short, Big O notation measures how quickly a function grows or declines
Also called Landau’s symbol, after the German number theoretician Edmund Landau who invented the notation
The growth rate of a function is also called its order
The capitalised greek letter “omicron” was originally used; this has fallen out of favour and the capitalised latin letter
“O” is now commonly used
Example use: Algoroithm X runs in �(�2) time
Big O notation is used in computer science to describe the complexity of an algorithm in the worst-case scenario
Can be used to describe the execution time required or the space used (e.g. in memory or on disk) by an algorithm
Big O notation can be thought of as a measure of the expected “efficiency” of an algorithm (note that for small sizes
of n, all algorithms are efficient, i.e. fast enough to be used for real time applications)
When evaluating the complexity of algorithms, we can say that if their Big O notations are similar, their complexity in
terms of time/space requirements is similar (in the worst case)
And if algorithm A has a less complex Big O notation than algorithm B, we can infer that it is much more efficient in
terms of space/time requirements (at least in the worst case)

Formally

Suppose �(�) and �(�) are two functions defined on some subset of the set of real numbers

<m 18>f(x)=O(g(x)) for x right infinity</m>

if and only if there exist constants � and � such that

<m 18>delim{|}{f(x)}{|}⇐C delim{|}{g(x)}{|} for x all x > N</m>

Intuitively, this means that � does not grow more quickly than �

(Note that N is size of the input set which is large enough for the higher order term to begin to dominate)

Tightest upper bound

Note that when using Big O notation, we aim to identify the tightest upper bound possible
An algorithm that is �(�2) is also �(�3) , but the former information is more useful
Specifying an upper bound which is higher than necessary is like saying: “This task will take at most one week to
complete”, when the true maximum time to complete the task is in fact five minutes!

Ω (omega) notation

We can use Ω (omega) notation to describe the complexity of an algorithm in the best case
Best case may not occur often, but still useful to analyse
Represents the lower bound on the number of possible operations
E.g. an algorithm which is Ω � exhibits a linear growth in execution time in the best case, as n is increased

2024/05/06 18:16 13/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Θ (theta) notation

Finally, Θ (theta) notation is used to specify that the running time of an algorithm is no greater or less than a certain
order
E.g. we say that an algorithm is Θ(�) if it is both O(�) and Ω � , i.e. the growth of its execution time is no better or
worse than the order specified (linear in this case)
The actual functions which describe the upper and lower limits do not need to be the exact same in this case, just of
the same order

Separating an algorithm and its implementation

Two concepts:
The input data size �, or the number of individual data items in a single data instance to be processed
The number of elementary operations �(�) taken by an algorithm, or its running time

For simplicity, we assume that all elementary operations take the same amount of “time” to execute (not true in
practice due to architecture, cache vs. RAM vs. swap/disk access times etc.)
E.g. an addition, multiplication, division, accessing an array element are all assumed to take the same amount of
time
Basis of the RAM (Random Access Machine) model of computation
The running time T n of an implementation is: <m>T(n)=c*f(n)</m>

�(�) refers to the fact that the running time is a function of the size n of the input dataset
� is some constant
The constant factor � can rarely be determined and depends on the specific computer, operating system,
language, compiler, etc. that is used for the program implementation

Evaluating complexity

When evaluating the complexity of an algorithm, keep in mind that you must identify the most expensive
computation within an algorithm to determine its classification
For example, consider an algorithm that is subdivided into two tasks, a task classified as linear followed by a task
classified as quadratic.

Say the number of operations/execution time is:
<m>T(n)=50+125n+5n^2</m>
The overall complexity of the algorithm must therefore be classified as quadratic, we can disregard all lower
order terms as the <m>n^2</m> term will become dominant for input sizes of �=6 or above

An algorithm with better asymptotic growth will eventually execute faster than one with worse asymptotic growth,
regardless of the actual constants
The actual breakpoint will differ based on the constants and size of the input, but it exists and can be empirically
evaluated
During asymptotic analysis we only need to be concerned with the fastest-growing term of the T(n) function. For this
reason, if the number of operations for an algorithm can be computed as <m 13>T(n)=c*n^3+d*n log(n)</m>, we
would classify this algorithm as <m 13>O(n^3)</m> because that is the dominant term which grows far more
rapidly than <m 13>n log(n)</m>

Passing an array to a method in Java and Python

If we want to pass multiple values to a method, the easiest way to do this is to pass in an array
E.g. an array of numbers to be sorted

// passing an array of integers into a method in Java
void myMethod(int[] elements) {
 // do something with the data here
}

def my_function(elements):
 # do something with the data here

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

test 1 = [5, 1, 12, -5, 16]
my_function(test1)

Array with 5 elements: <m 30>tabular{11}{111111}{5 1 12 {-5} 16}</m>

O(1) example

O(1) describes an algorithm that will always execute in the same time (or space) regardless of the size of the input
data set
Consider the Java code sample to the right
No matter how many elements are in the array, this method will execute in constant time
This method executes in constant time in the best, worst and average cases

Java Code

boolean isFirstElementTwo(int[] elements)
{
 if(elements[0] == 2) {
 return true;
 }
 else {
 return false;
 }
}

Python Code

O(1) Example
def is_first_el_two(elements):
 if elemenents[0] == 2:
 return True
 return False

test1 = [2, 1, 0, 3]
test2 = [0, 2, 3, 4]

print(is_first_el_two(test1)) # prints True
print(is_first_el_two(test1)) # prints False

O(n) example

Consider the code samples
The worst possible time complexity depends linearly on the number of elements in the array
Execution time for this method is constant in the best case

Java Code

boolean containsOne(int[] elements) {
 for (int i=0; i<elements.size(); i++){
 if(elements[i] == 1) {
 return true;
 }

2024/05/06 18:16 15/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

 }
 return false;
}

Python Code

O(n) Example
def contains_one(elements)
 for i in range(0, len(elements)):
 if elements[i] == 1:
 return True
 return False

test1 = [0, 2, 1, 2]
test2 = [0, 2, 3, 4]

print(contains_one(test1)) # prints True
print(contains_one(test1)) # prints False

O(n^2) example

<m>O(n^2)</m> represents an algorithm whose worst case performance is directly proportional to the square of
the size of the input data set
This class of complexity is common with algorithms that involve nested iterations over the input data set (e.g. nested
for loops)
Deeper nested iterations will result in higher orders e.g. <m>O(n^3), O(n^4)</m>, etc.

Consider the code samples below
The worst execution time depends on the square of the number of elements in the array
Execution time for this method is constant in the best case

Java Code

boolean containsDuplicates(int[] elements)
{
 for (int i=0; i<elements.length; i++){
 for (int j=0; j<elements.length; j++){
 if(i == j){ // avoid self comparison continue;
 }
 if(elements[i] == elements[j]) {
 return true; // duplicate found
 }
 }
 }
 return false;
}

Python Code

O(n^2) Example
def contains_duplicates(elements):
 for i in range (0, len(elements)):
 for j in range(0, len(elements)):
 if i == j: ##avoid self comparison
 continue

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

 if elements[i] == elements[j]:
 return True # duplicate found
 return False

test1 = [0, 2, 1, 2]
test2 = [1, 2, 3, 4]

print(contains_duplicates(test1)) # prints True
print(contains_duplicates(test2)) # prints False

2024/05/06 18:16 17/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Week 4 - Recursive Algorithms Part 1

Recursive Algorithms Part 1

Lecture Notes

05_recursive_algorithms_part_1.pdf

Socratica Third Part Video

The video and the code is a very condensed summary of the following section and not part of the syllabus, you can skip to
Iteration and recursion

Socratica - Recursion, the Fibonacci Sequence and Memoization

Code Summary from the video

memoization.py

from functools import lru_cache1.
 2.
#@lru_cache(maxsize=1000)3.
def fibonacci(n):4.
 if n == 1:5.
 return 16.
 elif n == 2:7.
 return 18.
 elif n > 2:9.
 return fibonacci(n-1) + fibonacci(n-2)10.
 11.
for n in range(1, 1001):12.
 print(n, ":", fibonacci(n))13.

Run the following code with the highlighted line commented and not
commented and observe the difference. The video link above the code
explains the details.

Roadmap

Iteration and recursion
Recursion traces
Stacks and recursion
Types of recursion
Rules for designing recursive algorithms

http://www.hdip-data-analytics.com/_media/modules/46887/pdf/05_recursive_algorithms_part_1.pdf
https://www.youtube.com/watch?v=Qk0zUZW-U_M
http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=8

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Iteration and recursion

For tasks that must be repeated, up until now we have considered iterative approaches only
Recap: iteration allows some sequence of steps (or block of code) to be executed repeatedly, e.g using a loop or a
while loop
Recursion is another technique which may be applied to complete tasks which are repetitive in nature

Recursion

“Normally”, procedures (or methods) call other procedures
e.g the main() procedure calls the alpha() procedure

A recursive procedure is one which calls itself
e.g the beta() procedure contains a call to beta()

Simple Recursion Program

you can see that the count method calls itself
this program would output the values 0 1 2 to the console if run

Java code

void main(){
 count(0);
}

void count(int index){
 print(index);
 if(index <2){
 count(index+1);
 }
}

Python code

def count(index):
 print(index)
 if index < 2:
 count(index + 1)

2024/05/06 18:16 19/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

count(0) # outputs 0 1 2

Recursion trace for the call count(0)

Stacks

A program stack basically operates like a continuer of trays in a cafeteria. It has only two operations:
Push: push something onto the stack
Pop: pop something off the top of the stack

When the method returns or exits, the method’s activation frame is popped off the stack
Each time a method is invoked, the method’s activation frame (record) is placed on top of the program stack.

Stacks and recursion

Why use recursion?

with the technique of recursion, a problem may be solved bye solving smaller instances of the same problem
Some problems are more easily solved by using a recursive approach
E.g

Traversing through directories of a file system

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Traversing through a tree of search results
some sorting algorithms are recursive in nature

Recursion often leads to cleaner and more concise code which is easier to understand

Recursion vs iteration

Note: any set of tasks which may be accomplished using a recursive procedure may also be accomplished by using
an iterative procedure
Recursion is “expensive”. The expense of recursion lies in the fact that we have multiple activation frames and the
fact that there is overhead involved with calling a method.
If both of the above statements are true, why would we ever use recursion?
In many cases, the extra “expense” of recursion is far outweighed by a simpler, clearer algorithm which leads to an
implementation that is easier to code.
Ultimately, the recursion is eliminated when the complier creates assembly language (it does this by implementing
the stack)
If the recursion tree has a simple form, the iterative version may be better
If the recursion tree appears quite “bushy”, with very few duplicate tasks, then recursion is likely the natural solution

Types of recursion

Linear recursion: the method makes a single call to itself
Tail recursion: the method makes a single call to itself, as the last operations
Binary recursion: the method makes 2 calls to itself
Exponential recursion: the method makes more than two calls to itself

Tail Recursions

Tail recustioon is when the last operation in a method is a single recursive call.
Each time a method is invoked, the method’s activation frame(record) is placed on top of the program stack.
In this case, there are multiple active stack frames which are unnecessary because they have finished their work.
Can be expensive and inefficient, so use carefully!

Infinite recursion

infinite recursion occurs when a recursion method does not have a base case
consider the method to the right:

If we call infinite(1), the next call will be infinite(0), then the infinite(-1), then infinite(-2) etc..
This method will keep making recursive calls to itself until a StackOverflowError occurs (recursive calls have
taken up all available memory)

Java code

void infinite(int x){
 infinite(x-1);
}

Pythoncode

def infinite(x):
 infinite(x-1)

infinite(1)

2024/05/06 18:16 21/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

RecusrionError:
maximimum recursion depth exceeded

Circular Recursion

Circular recursion occurs when recursive calls stop making progress towards the base case
Conside this method

if we call circular(1), the next call will be circular(2), then the circular(1), then circular(2) etc..
As with the infinite recursion example, this method will keep making recursive calls to itself until a stack
overflow error occurs (recursive calls have taken up all available memory)

Java code

void circular(int x){
 if(x==1){
 circular(x+1);
 }
 circular(x-1);
}

Python code

def circular(x):
 if x ==1:
 circilar(x + 1)
 circular(x - 1)

circilar(1) # RecursioError:
maximum recusrion depth exceeded
in comparison

Rules for receive algorithms

Base case: a recursive algorithm must always have a base case which can be solved without recursion. Methods1.
without a base case will results in infinite recursion when run.
Making progress: for cases that are to be solved recursively, the next recursive call must be a case that makes2.
progress towards the base case. Methods that do not make progress towards the base case will results in circular
recursion when run.
Design rule: Assume that all the recursive calls work.3.
Compound interest rule: Never duplicate work by solving the same instance of a problem in separate calls.4.

Designing Recursive Algorithms

Think about the task which you wish to accomplish, and try to identify any recurring patterns, e.g. similar operations
that must be conducted, like traversing through nested directories on a file system
Divide the problem up using these recurring operations
Then

Identify cases you know can be solved without recursion (base cases). Avoid ending with a multitude of
special cases; rather, try to identity a simple base case
invoke a new copy of the method within each recursion step
each recursion step resembles the original, larger problem
Make progress towards the base case(s) with each successive recursive step/call

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Recap

A recursive method is one which calls itself within its method body
Recursion allows us to solve a problem, by breaking it up into smaller instances of the same problem
Recursive methods must always have a base case which may be solved without recursion
In the next lecture we will consider some example problems which may be solved using recursion

Week 5 - Recursive Algorithms Part 2

Roadmap

Review of recursion
Sample recursive algorithms

Factorials
Greatest common divisor
Fibonacci series

Review of recursion

“Normally”, procedures (or methods) call other procedures
e.g the main() procedure calls the alpha() procedure

A recursive procedure is one which calls itself
e.g the beta() procedure contains a call to beta()

Rules for recursive algorithms

Base case: a recursive algorithm must always have a base case which can be solved without recursion. Methods1.
without a base case will result in infinite recursion when run.
Making progress: for cases that are to be solved recursively, the next recursive call must be a case that makes2.
progress towards the base case. Methods that do not make progress towards the base case will result in circular
recursion when run.
Design rule: assume that all the recursive call work3.
Compound interest rule: Never duplicate work by solving the same instance of a problem in separate recursive4.
calls.

Factorials

The factorial of a non-negative integer n may be computed as the product of all positive integers which are less than
or equal to n
This is denoted by n!
in general : n! = n * (n-1)* (n-2)*(n-3)*….*1
The above is essentially an algorithm which may be implemented and used to calculate the factorial of any n >0
Note: the value of 0! is defined as 1 (i.e 0! = 1 following the empty product convention), The input n=0 will serve as
the base case in our recursive implementation
Factorial operations are commonly used in many areas of mathematics, e.g combinatorics, algebra, computation of
functions such as sin and cos, and the binomial theorem.
One of its most basic occurrences is the fact that there are n! ways to arrange distinct objects into a sequence
In general: n! = n *(n - 1)*(n-2)*(n-3)*..*1
Example factorial calculation: 5! = 5*4*3*2*1 = 120

2024/05/06 18:16 23/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Computing a factorial

iterative implementation

def factorial(n):
 answer = 1
 while n > 1:
 answer *= n
 n -=1
 return answer

print(factorial(5))
#prints 120

Recursive implementation

def factorial_rec(n):
 if n <1:
 return 1
 else:
 return n*factorial_rec(n-1)

print(factorial_rec(5))
#print 120

Greatest common Divisor

The greatest common divisor (gcd) of two integer is the largest positive integer which divides into both numbers

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

without leaving a remainder
e.g the gcd of 30 and 35 is 5
Euclid’s algorithm (c. 300 BC) may be used to determine the gcd of two integers
Example application: finding the largest square tile which can be used to cover the floor of a room without using
partial/cut tile

Computing the greatest common divisor

iterative implementation

def euclid(a, b):
 while b != 0:
 temp = b
 b = a% b
 a = temp
 return a

print(euclid(35, 49))
print 7

Recursive implementation

def euclid (a, b):
 if b == 0:
 return a
 else:
 return euclid(b, a%b)
print(euclid(35, 49))
prints 7

2024/05/06 18:16 25/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Fibonacci series

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610
the Fibonacci series crops up very often in nature and can be used to model the growth rate of organisms
e.g leaf arrangements in plants, numbers of petals on a flower, the bracts of a pinecone, the scales of pineapple,
shells, proportions of the human body
The fibonacci series is named after the Italian mathematician Leonardo of Pisa, who was also known as Fibonacci
His book Liber Abaci (published 1202) introduced the sequence to western world (Indian mathematicians knew about
this sequence previously).
We will use the convention that zero is included in the series and assigned to index 1
if fib(n) is a method that returns the nth number in the series, then: fib(1)=0, fib(2)=1, fib(3)=1, fib(4)=2, fib(5)=3,
fib(6)=5, fib(7)=8, etc…
In general, fib(n) = fib(n-1) +fib(n-2)
The results for fib(1) and fib(2) do not conform to this rule; therefore they will serve as base cases in our recursive
implementation

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Computing the nth Fibonacci number

Iterative implementation

def fib(n):
 i, n1, n2 =1, 0, 1
 while i <n:
 temp =n1
 n1 = n2
 n2 =n1 +temp
 i = 1+ i
 return n1

print(fib(5))
#prints 3

Recursive implementation

def fib(n):
 if n==1:
 return 0
 elif n ==2:
 return 1
 return fib(n-1) +fib(n-2)

print(fib(5))
#prints 3

Week 6 - Cryptography

2024/05/06 18:16 27/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Overview

07_algorithms_cryptography_ssl_2019_part1.pdf

Crytography (terms and definitions)
Types of cry–systems (symmetric and asymmetric)
Examples of systems in practice

Introduction to Cryptography

Cryptography is the science of secrecy and is concerned with the need to communicate in secure, private and
reliable ways
From a computational thinking/algorithmics perspective, a novel feature is the fact (as we will see) that modern
methods used to solve cryptographic problems exploit the difficulty of solving other problems.

This is somewhat surprising…..

problems for which no good algorithms are known are crucial here.

Cryptography (Problem Statement)

The basic problem to be solved is that of encrypting and decrypting data.
How should we encode an important message in such a way that the receiver should be able to decipher it,
but not an eavesdropper?
Moreover, can then message be signed by the sender so that:

The receiver can be sure that only the sender could have sent it.1.
The sender cannot later deny having sent it2.
The receiver, having received the signed message, cannot sign a message in the sender name, not3.
even additional versions of the very message that has just been received.

Cryptography (Some definitions)

Data that can be read and understood without any special measure is called plaintext(or clear text). Plaintext, P, is
the input to an encryption process(algorithm).
Encryption is the process of disguising plaintext in such a way as to hide its substance.
The result (output..) of the encryption process is ciphertext, C

A general encryption procedure(left) and decryption procedure (right) is as follows:

<m 20>C = Encr(P)</m> and <m 20>P = Decr(C)</m>

http://www.hdip-data-analytics.com/_media/modules/46887/pdf/07_algorithms_cryptography_ssl_2019_part1.pdf

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Symmetric Cryptography

In conventional cryptography, also called secret-key or symmetric-key encryption, one key is used both for
encryption and decryption

EG. The data Encryption Standard (DES) cryptosystem

Symmetric Cryptography - Simple Example

Substitution Cipher

The Caesar cipher shifted the alphabet by 3 characters

EG: Hello - > khoor

Caesar cipher is a one to one mapping. A mono alphabetic substitution!
Cryptanalysis exploits statistical properties of the English language.
“E” is the most frequently occurring letter

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_10.51.36.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_11.28.57.png?id=modules%3A46887

2024/05/06 18:16 29/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

So from example above, this kind of cypher is easily broken…

Symmetric Cryptography - Examples continued...

Polyalphabetic substitution:

The key is a simple phrase of fixed length(which can repeat).
Add the value of the letter in the key to the value of the letter inthe plaintext to ciphertext, and “wrap around” if
necessary (modulo 36)

This is essentially multiple Caesar-type ciphers
Main advantage is that same plaintext get mapped onto different cipher-text.

Polyalphabetic substitution continued

This is essentially multiple Caesar-type ciphers
Main advantage is that same plaintext get mapped onto different ciphertext

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_11.34.04.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_11.50.13.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_11.56.49.png?id=modules%3A46887

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Decryption Algorithm

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.03.52.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.07.04.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.04.32.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.09.46.png?id=modules%3A46887

2024/05/06 18:16 31/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Cryptography: Algorithms and keys

The strength of a cryptosystem is a function of:
The strength of the algorithm
The length (or size) of the key

The assumption is that the general method of encryption (i.e the algorithm is known), and the security of the system
lies in the secrecy of the key.

eg: General idea of a combination pad lock is known, strength is in secret combination.
The larger the key, the higher the work factor for the cryptanalyst.
A brute-force attack means trying all possible key values.

Cryptographic keys

In our earlier example, we had a phrase as our key to unlocking the secret message:

…and each letter of the phrase could take on 1 of 26 possible numeric values.

Ours are (t =20, h= 8 etc…)

As we had 10 characters in our phrase, and each character could be any 1 of 26 possible values, our potential key space is
<m>26^10</m> i.e there are 141,167,095,653,376 possible keys or “phrases”.

Let's think of key as multiples of bits or bytes in a computer system
If a key is 8 bits long, then there are 2^8 = 256 possible keys
A key that is 56-bits long has 2^56 possible key values. A very large number!

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.10.27.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.20.11.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.21.28.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_12.24.36.png?id=modules%3A46887

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

*72,057,594,927,936 possible values in fact! * If a computer could try one million keys per second, it
would take over 2000 years to try all key values.*

72, 057, 594, 927, 936 possible values @1,0000,000
72,057,594,037,927,936/1,000,000 = 72057594037 seconds required to test all values
72057594037/60 = 1,200,959,900 minutes required to test all values
1,200,959,900/60 = 20,015,998.33 hours required to test all values
20,015,998.33/24 = 833,999.93 days required to test all values/365 = 2,284 YEARS
If a 64-bit key were used, it would take 600,000 years to try all possible key values (at a test rate 1 million keys per
second)
For a 128-bit key, it would take 10^25 years. The universe is only 10^10 years old.
When trying a brute force attack need to consider:

Number of keys to be tested
The speed of each test

Some limitations of Symmetric Cryptography

Consider our problem statement from earlier (which outlined what our desired solution should solve)

Does not address the signature issue…
Receiver could make up fake messages?
Sender could deny having sent authentic messages

Another major drawback (particularly in a distributed environment like the internet) is the issue of key distribution
and management
Symmetric systems require parties to cooperate in the generation an distribution of key pairs. Not scalable (even
where it might be “culturally” feasible)

Cryptography: Key Distribution

Ciphers have improved significantly in terms of complexity since the days of Caesar. However….
As noted, a big issue with symmetric cryptographic systems is that of Key management; specifically with respect to
transferring keys.
How do the sender and receiver agree on the same key?
split the key into several parts?
Other…?

2024/05/06 18:16 33/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Asymmetric Cryptography: Public Key Cryptography

The problems of key distribution are solved by public key cryptography
Public key cryptography is an asymmetric scheme that uses a pair of keys for encryption: a public key, which
encrypts data, and a corresponding private, or secret key for decryption.
You publish you public key to the world while keeping your private key secret. Anyone with a copy of your public key
can then encrypt information that only you can read.
Crucially, it is computationally infeasible to deduce the private key from the public key

Public Key Cryptography

The primary benefit of public key crptograohy is that it allows people who have no pre-existing security arrangement
to exchange messages securely.

The need for sender and receiver to share secret keys via some secure channel is eliminated; all communications
involve only public keys, and no private key is ever transmitted or shared.

A little bit of number theory

Prime number: A number is prime if it is greater than 1 and if its only factors are itself and 1.

1 is not prime (1 is not greater than 1)
2 is prime (the only even prime)
3 is prime
4 is not prime (no other even number - except 2 - is prime)…4 *1, 2*2
5 is prime (but being odd does not necessarily make you prime)
6 is not prime 6*1, 3*2
8 is not prime…8*1, 2*4
9 is not prime (but it is odd)…9*1, 3*3

RSA Algorithm

First published in 1978 (and still secure) (researchers: Ron Rivet, Adi Shamir, Len Adleman)
A block ciphering scheme, where the plaintext and cipher-text are integers between 0 and -1, for some value n.

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.29.18.png?id=modules%3A46887

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

(Foundation is a number theory in mathematics, based on Euler's generalisation of Fermat's Theorem).

Format

A block of plaintext(message), M, gets transformed into a cipher block C

Both sender and receiver know the value of n (public)
sender/everyone knows the value of e (public)
Receiver only knows the value of d (Private)

Requirements:

RSA: A (simple) example

Suppose I wish to send my access number securely across an “open” network.

e.g. PIN = 2345

I don't want my account to be hacked; neither does my employer!
My employer implements a security system (based on the RSA algorithm, for instance) and tells me (and everyone
else)….

“When sending us private data such as your PIN, encrypt it using RSA. This is the relevant public key information:
e=7, n=33”

Encrypting my "Plaintext" PIN: 2 3 4 5

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.42.12.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.44.16.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.45.15.png?id=modules%3A46887

2024/05/06 18:16 35/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

An “attacker” listening in on the connection might capture your encrypted PIN (i.e they could discover 29,9,16,14)
Furthermore they would know that this is the output of the known RSA algorithm (C = P^e mod n)
…They would know that e=7 and that n = 33 as these are publicly available)
But… they won't be able to figure out P (the plaintext) in a reasonable amount of time

Decrypting 29,9,16,14

Can only be done (in a reasonable amount of time) if you know the private/secret, d
d is not publicly available and is jealously guarded by the owner.
Decryption is straightforward if you know the value of d.

Raising the ciphertext to the power of d, modulo n, will give you back the plaintext.

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.57.12.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_13.57.42.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_14.04.58.png?id=modules%3A46887

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Note that a knowledges of the encryption algorithm, a knowledge of the encryption key and a copy of the ciphertext
is not sufficient to get back the plaintext (in a reasonable amount of time)
You must also know the value of d, the private key.
The beauty of RSA is that the encryption key and process can be made public without compromising the security of
the system. This solves the “Key distribution” problem outlined earlier.

Next steps

Future session to look at RSA in more detail including some of the underpinnings of the algorithm.
Authentication and signatures using RSA
Secure Sockets Layer(SSL) Algorithm
RSA performance
Attacking RSA

To do W6

Contribute to the discussion forum on Moodle/LearnOnline
Further reading in this area

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_14.07.27.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-02_at_14.08.05.png?id=modules%3A46887

2024/05/06 18:16 37/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

DATA ANALYTICS REFERENCE DOCUMENT

Document Title: Document Title

Document No.: 1552735583

Author(s): Gerhard van der Linde, Rita Raher

Contributor(s):

REVISION HISTORY

Revision Details of
Modification(s)

Reason for
modification Date By

0 Draft release Document description here 2019/03/16
11:26

Gerhard van der
Linde, Rita

Raher

Week 8 - Sorting Algorithms Part 1

07_sorting_algorithms_part_1.pdf

Overview

Introduction to sorting
Conditions for sorting
Comparator functions and comparison-based sorts
Sort keys and satellite data
Desirable properties for sorting algorithms

Stability
Efficiency
In-place sorting

Overview of some well-known sorting algorithms
Criteria for choosing a sorting algorithm

Sorting

Sorting – arrange a collection of items according to some pre-defined ordering rules
There are many interesting applications of sorting, and many different sorting algorithms, each with their own
strengths and weaknesses.
It has been claimed that as many as 25% of all CPU cycles are spent sorting, which provides a great incentive for
further study and optimization
The search for efficient sorting algorithms dominated the early days of computing.
Numerous computations and tasks are simplified by properly sorting information in advance, e.g. searching for a
particular item in a list, finding whether any duplicate items exist, finding the frequency of each distinct item, finding
order statistics of a collection of data such as the maximum, minimum, median and quartiles.

http://www.hdip-data-analytics.com/doku.php?id=modules:46887_sorting&do=revisions
http://www.hdip-data-analytics.com/_media/modules/46887/pdf/07_sorting_algorithms_part_1.pdf

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Timeline of sorting algorithms

1945 – Merge Sort developed by John von Neumann
1954 – Radix Sort developed by Harold H. Seward
1954 – Counting Sort developed by Harold H. Seward
1959 – Shell Sort developed by Donald L. Shell
1962 – Quicksort developed by C. A. R. Hoare
1964 – Heapsort developed by J. W. J. Williams
1981 – Smoothsort published by Edsger Dijkstra
1997 – Introsort developed by David Musser
2002 – Timsort implemented by Tim Peters

Sorting

Sorting is often an important step as part of other computer algorithms, e.g. in computer graphics (CG) objects are
often layered on top of each other; a CG program may have to sort objects according to an “above” relation so that
objects may be drawn from bottom to top
Sorting is an important problem in its own right, not just as a preprocessing step for searching or some other task
Real-world examples:

Entries in a phone book, sorted by area, then name
Transactions in a bank account statement, sorted by transaction number or date
Results from a web search engine, sorted by relevance to a query string

Conditions for sorting

A collection of items is deemed to be “sorted” if each item in the collection is less than or equal to its successor
To sort a collection A, the elements of A must be reorganised such that if A[i] < A[j], then i < j
If there are duplicate elements, these elements must be contiguous in the resulting ordered collection – i.e. if A[i] =
A[j] in a sorted collection, then there can be no k such that i < k < j and A[i] ≠ A[k].
The sorted collection A must be a permutation of the elements that originally formed A (i.e. the contents of the
collection must be the same before and after sorting)

Comparing items in a collection

What is the definition of “less than”? Depends on the items in the collection and the application in question
When the items are numbers, the definition of “less than” is obvious (numerical ordering)
If the items are characters or strings, we could use lexicographical ordering (i.e. apple < arrow < banana)
Some other custom ordering scheme – e.g. Dutch National Flag Problem (Dijkstra), red < white < blue

Comparator functions

Sorting collections of custom objects may require a custom ordering scheme
In general: we could have some function compare(a,b) which returns:

-1 if a < b
0 if a = b
1 if a > b

Sorting algorithms are independent of the definition of “less than” which is to be used
Therefore we need not concern ourselves with the specific details of the comparator function used when designing
sorting algorithms

2024/05/06 18:16 39/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Inversions

The running time of some sorting algorithms (e.g. Insertion Sort) is strongly related to the number of inversions in the
input instance.
The number of inversions in a collection is one measure of how far it is from being sorted.
An inversion in a list A is an ordered pair of positions (i, j) such that:

i < j but A[i] > A[j].
i.e. the elements at positions i and j are out of order

E.g. the list [3,2,5] has only one inversion corresponding to the pair (3,2), the list [5,2,3] has two inversions, namely,
(5,2) and (5,3), the list [3,2,5,1] has four inversions (3,2), (3,1), (2,1), and (5,1), etc.

Comparison sorts

A comparison sort is a type of sorting algorithm which uses comparison operations only to determine which of two
elements should appear first in a sorted list.
A sorting algorithm is called comparison-based if the only way to gain information about the total order is by
comparing a pair of elements at a time via the order ≤.
Many well-known sorting algorithms (e.g. Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Quicksort, Heapsort)
fall into this category.
Comparison-based sorts are the most widely applicable to diverse types of input data, therefore we will focus mainly
on this class of sorting algorithms
A fundamental result in algorithm analysis is that no algorithm that sorts by comparing elements can do better than
<m>n</m> log <m>n</m> performance in the average or worst cases.
Under some special conditions relating to the values to be sorted, it is possible to design other kinds of non-
comparison sorting algorithms that have better worst-case times (e.g. Bucket Sort, Counting Sort, Radix Sort)

Sort keys and satellite data

In addition to the sort key (the information which we use to make comparisons when sorting), the elements which
we sort also normally have some satellite data
Satellite data is all the information which is associated with the sort key, and should travel with it when the element
is moved to a new position in the collection
E.g. when organising books on a bookshelf by author, the author’s name is the sort key, and the book itself is the
satellite data
E.g. in a search engine, the sort key would be the relevance (score) of the web page to the query, and the satellite
data would be the URL of the web page along with whatever other data is stored by the search engine
For simplicity we will sort arrays of integers (sort keys only) in the examples, but note that the same principles apply
when sorting any other type of data

Desirable properties for sorting algorithms

Stability – preserve order of already sorted input
Good run time efficiency (in the best, average or worst case)
In-place sorting – if memory is a concern
Suitability – the properties of the sorting algorithm are well-matched to the class of input instances which are
expected i.e. consider specific strengths and weaknesses when choosing a sorting algorithm

Stability

If a comparator function determines that two elements �� and �� in the original unordered collection are equal, it
may be important to maintain their relative ordering in the sorted set

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

i.e. if i < j, then the final location for A[i] must be to the left of the final location for A[j]
Sorting algorithms that guarantee this property are stable
Unstable sorting algorithms do not preserve this property
Using an unstable sorting algorithm means that if you sort an already sorted array, the ordering of elements which
are considered equal may be altered!

Stable sort of flight information

All flights which have the same destination city are also sorted by their scheduled departure time; thus, the sort
algorithm exhibited stability on this collection.
An unstable algorithm pays no attention to the relationships between element locations in the original collection (it
might maintain relative ordering, but it also might not).

Reference: 1)

Analysing sorting algorithms

When analysing a sorting algorithm, we must explain its best-case, worstcase, and average-case time complexity.
The average case is typically hardest to accurately quantify and relies on advanced mathematical techniques and
estimation. It also assumes a reasonable understanding of the likelihood that the input may be partially sorted.
Even when an algorithm has been shown to have a desirable best-case, average-case or worst-case time complexity,
its implementation may simply be impractical (e.g. Insertion Sort with large input instances).
No one algorithm is the best for all possible situations, and so it is important to understand the strengths and
weaknesses of several algorithms.

2024/05/06 18:16 41/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Recap: orders of growth

Factors which influence running time

As well as the complexity of the particular sorting algorithm which is used, there are many other factors to consider
which may have an effect on running time, e.g.
How many items need to be sorted
Are the items only related by the order relation, or do they have other restrictions (for example, are they all integers
in the range 1 to 1000)
To what extent are the items pre-sorted
Can the items be placed into an internal (fast) computer memory or must they be sorted in external (slow) memory,
such as on disk (so-called external sorting).

In-place sorting

Sorting algorithms have different memory requirements, which depend on how the specific algorithm works.
A sorting algorithm is called in-place if it uses only a fixed additional amount of working space, independent of the
input size.
Other sorting algorithms may require additional working memory, the amount of which is often related to the size of
the input n
In-place sorting is a desirable property if the availability of memory is a concern

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Week 9: Sorting Algorithms Part 2

Overview

Review of sorting & desirable properties for sorting algorithms
Introduction to simple sorting algorithms

Bubble Sort
Selection sort

2024/05/06 18:16 43/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Insertion sort

Review of sorting

Sorting - Arrange a collection of items according to pre-defined ordering rule

Desirable properties for sorting algorithms
Stability - preserve order of already sorted input
Good run time efficiency(in the best, average or worst case)
In-place sorting - if memory is a concern
Suitability - the properties of the sorting algorithm are well-matched to the class of input instances which are
expected i.e. consider specific strengths and weaknesses when choosing a sorting algorithm.

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Comparison sorts

A comparison sort is a type of sorting algorithm which uses comparison operations only to determine which of two
elements should appear in a sorted list.
A sorting algorithm is called comparison-based if the only way to gain information about the total order is by
comparing a pair of elements at a time via the order ≤
The simple sorting algorithms which we will discuss in this lecture (Bubble sort, insertion sort, and selection sort) all
fall into this category.

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

A fundamental result in algorithm analysis is that no algorithm that sorts by comparing elements can do better than
<m>n</m> log <m>n</m> performance in the average or worst cases.
Non-comparison sorting algorithms(e.g Bucket Sort, Counting Sort, Radix Sort) can have better worst-case times.

Bubble Sort

Named for the way larger values in a list “Bubble up” to the end as sorting takes place
Bubble sort was first analysed as early as 1956 (time complexity is <m>n</m> in best case, and <m>n^2</m> in
worst and average cases)
Comparison-based
In-place sorting algorithm(i.e uses a constant amount of additional working space in addition to the memory required
for the input)
Simple to understand and implement, but it is slow and impractical for most problems even when compared to
Insertion sort.
Can be practical in some cases on data which is nearly sorted

Bubble Sort procedure

Compare each element(except the last one) with its neighbour to the right
if they are out of order, swap them
this puts the largest element at the very end
the last element is now in the correct and final place

Compare each element(except the last two) with its neighbour to the right
If they are out of order, swap them
This puts the second largest element next to last
The last two elements are now in their correct and final places.

Compare each element (except the last three) with its neighbour to the right
…

Continue as above until there are no unsorted elements on the left

Bubble Sort example

Bubble Sort in Code

public static void bubblesort(int[]a){
 int outer, inner;

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_20.38.43.png?id=modules%3A46887

2024/05/06 18:16 45/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

 for(outer = a.length - 1; outer > 0;outer--){ //counting down
 for(inner=0;inner < outer;inner++){ //bubbling up
 if(a[inner] > a[inner+1]; { //if out of order....
 int temp = a[inner]; //...then swap
 a[inner] =a[inner+1];
 a[inner +1] = temp;
 }
 }
 }
 }

bubblesort.py

Bubble Sort in python
def printArray(arr):
 print (' '.join(str(i) for i in arr))

def bubblesort(arr):
 for i in range(len(arr)):
 for j in range(len(arr) - i - 1):
 if arr[j] > arr[j + 1]:
 temp = arr[j]
 arr[j] = arr[j + 1]
 arr[j + 1] = temp
 # Print array after every pass
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 bubblesort(arr)

Bubble Sort Example

Analysing Bubble Sort (worst case)

for(outer =a.length-1; outer >0; outer--){
 for(inner=0; inner < outer; inner++){
 if(a[inner]>a[inner+1]){
 //swap code omitted
 }

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=22
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_20.54.35.png?id=modules%3A46887

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

 }
}

In the worst case, the outer loop executes n-1 times (say n times)
On average, inner loop executes about n/2 times for each outer loop
In the inner loop, comparison and swap operations take constant time k
Result is:

Selection Sort

Comparison-based
In-place
Unstable
Simple to implement
Time complexity is <m>n^2</m> in best, worst and average cases.
Generally gives better performance than Bubble Sort, but still impractical for real world tasks with a significant input
size
In every iteration of selection sort, the minimum element (when ascending order) from the unsorted subarray on the
right is picked and moved to the sorted subarray on the left.

Selection Sort procedure

Search elements 0 through n-1 and select the smallest
swap it with the element in location 0

Search elements 1 through n-1 and select the smallest
swap it with the element in location 1

Search elements 2 through n-1 and select the smallest
swap it with the element in location 2

Search elements 3 through n-1 and select the smallest
swap it with the element in location 3

Continue in this fashion until there's nothing left to search

Selection Sort example

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.00.45.png?id=modules%3A46887

2024/05/06 18:16 47/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

The element at index 4 is the smallest, so swap with index 0
The element at index 2 is the smallest, so swap with index 1
The element at index 3 is the smallest, so swap with index 2
The element at index 3 is the smallest, so swap with index 3

Selection sort might swap an array element with itself; this is harmless, and not worth checking for

Selection Sort in Code

public static void selectionsort(int[]a){
 int outer=0, inner=0, min=0;
 for(outer = 0; outer <a.length-1;outer++){ //outer counts up
 min = outer;
 for(inner = outer +1; inner <a.length; inner++){
 if(a[inner]<a[min]){ //find index of smallest value
 min = inner;
 }
 }
 //swap a [min] with a [outer]
 int temp = a[outer];
 a[outer] = a[min];
 a[min] = temp;
 }
}

selection_sort.py

selection sort in python
def printArray(arr):
 return (' '.join(str(i) for i in arr))

def selectionsort(arr):
 N = len(arr)
 for i in range(0, N):
 small = arr[i]
 pos = i
 for j in range(i + 1, N):
 if arr[j] < small:

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.10.52.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=25

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

 small = arr[j]
 pos = j
 temp = arr[pos]
 arr[pos] = arr[i]
 arr[i] = temp
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 selectionsort(arr)

Analysing Selection Sort

The outer loop runs <m>n</m> - 1 times
The inner loop executes about <m>n</m>/2 times on average(from <m>n</m> to 2 times)
Results is:

 in best, worst and average cases

Insertion Sort

Similar to the method usually used by card players to sort cards in their hand.
Insertion sort is easy to implement, stable, in-place, and works well on small lists and lists that are close to sorted.
On data sets which are already substantially sorted it runs in n +d time, where d is the number of inversions.
However, it is very inefficient for large random lists.
Insertion Sort is iterative and works by splitting a list of size n into a head(“sorted”) and tail(“unsorted”) sublist.

Insertion Sort procedure

Start from the left of the array, and set the “key” as the element at index 1.Move any elements to the left which are
> the “key” right by one position, and insert the “key”.
Set the “Key” as the element at index 2. Move any elements to the left which are > the key right by one position and
insert the key.
Set the “key” as the element at the index 3. Move any elements to the left which are > the key right by one position
and index the key.

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.21.22.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.23.01.png?id=modules%3A46887

2024/05/06 18:16 49/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

…
Set the “key” as the elements at index <m>n</m>-1. Move any elements to the left which are > the key right by
one position and insert the key.
The array is now sorted.

Insertion Sort example

a[1]=5 is the key; 7>5 so move 7 right by one position, and insert 5 at index 0
a[2]=2 is the key; 7>2 so move both 7 and 5 right by one position, and insert 2 at index 0
a[3]=3 is the key; 7>3 and 5>3 so move both 7 and 5 right by one position, and insert 3 at index 1
a[4]=1 is the key; 7>1, 5>1, 3>1 and 2>1 so move both 7, 5, 3 and 2 right by one position, and insert 1 at index 1

(done)

Insertion Sort in code

public static void insertionsort(int a[]){
 for(int i=1; i<a.length; i++){
 int key =a[i]; //value to be inseted
 int j = i-1;
 //move all elements > key right one position
 while(j>=0 && a[j]>key){
 a[j+1]= a[j];
 j=j-1;
 }
 a[j+1]=key; //insert key in its new position
 }

}

insertion_sort.py

insertion sort
def printArray(arr):
 return(' '.join(str(i) for i in arr))

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.35.13.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=27

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

def insertionsort(arr):
 N = len(arr)
 for i in range(1, N):
 j = i - 1
 temp = arr[i]
 while j >= 0 and temp < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = temp
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 insertionsort(arr)

Analysing Insertion Sort

The total number of data comparisons made by insertion sort is the number of inversions d plus at most <m>n</m>
-1
A sorted list has no inversions - therefore insertion sort runs in linear Ω(n) time in the best case(when the input is
already sorted)

On average, a list of size <m>n</m> has inversions, and the number of comparisons is

In the worst case, alist of size n has inversions(reserve sorted input), and the number of

comparisons is

Comparison of Simple sorting algorithms

The main advantage that Insertion sort has over Selection Sort is that the inner loop only iterates as long as is
necessary to find the insertion point.
In the worst case, it will iterate over the entire sorted part. In the case, the number of iterations is the same as for
selection sort and bubble sort.
At the other extreme, however, if the array is already sorted, the inner loop won't need to iterate at all. In this case,
the running time is Ω(n), which is the same as the running time of Bubble sort on an array which is already sorted.
Bubble Sort, Selection sort and insertion sort are all in-place sorting algorithms.
Bubble sort and insertion sort are stable, whereas selection sort

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.49.14.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.50.40.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.51.18.png?id=modules%3A46887
http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.52.03.png?id=modules%3A46887

2024/05/06 18:16 51/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Criteria Sorting algorithm
Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Recap

Bubble sort, selection sort and insertion sort are all O(<m>n^2</m>) in the worst case
It is possible to do much better than this even with comparison-based sorts, as we will see in the next lecture
from this lectuure on simple O(<m>n^2</m>)sorting algorithms:

Bubble sort is extremely slow, and is of little practical use
Selection sort is generally better than Bubble sort
Selection sort and insertion sort are “good enough” for small input instances
Insertion sort is usually the fastest of the three. In fact, for small <m>n</m> (say 5 or 10 elements), insertion
sort is usually fasters than more complex algorithms.

Week 10: Sorting Algorithms Part 3

Overview

Efficient comparison sort
Merge sort
Quick sort

Non-comparison sorts
Counting sort
Bucket sort

Hybrid Sorting algorithms
Introsort
Timsort

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Merge sort

Proposed by john von Neumann in 1945
This algorithm exploits a recursive divide-and conquer approach resulting in a worst-case running time of �(<m>n
log n</m>), the best asymptotic behaviour which we have seen so far.
It's best, worst, and average cases are very similar, making it a very good choice if predictable runtime is important -
Merge Sort gives good all-round performance.
Stable sort
Versions of merge Sort are particularly good for sorting data with slow access times, such as data that cannot be held
in internal memory(RAM) or are stored in linked lists.

Merge Sort Example

Mergesort is based on the following basic idea:
if the size of the list is 0 or 1, return.
Otherwise, separate the list into two lists of equal or nearly equal size
and recursively sort the first and second halves separately.
finally, merge the two sorted halves into one sorted list.

Clearly, almost all the work is in the merge step, which should be as efficient as
possible.
Any merge must take at least time that is linear in the total size of the two lists
in the worst case, since every element must be looked at in order to determine
the correct ordering.

Merge Sort in code

merge_sort.py

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=28

2024/05/06 18:16 53/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Merge sort1.
def mergesort(arr, i, j):2.
 mid = 03.
 if i < j:4.
 mid = int((i + j) / 2)5.
 mergesort(arr, i, mid)6.
 mergesort(arr, mid + 1, j)7.
 merge(arr, i, mid, j)8.
 9.
 10.
def merge(arr, i, mid, j):11.
 print ("Left: " + str(arr[i:mid + 1]))12.
 print ("Right: " + str(arr[mid + 1:j + 1]))13.
 N = len(arr)14.
 temp = [0] * N15.
 l = i16.
 r = j17.
 m = mid + 118.
 k = l19.
 while l <= mid and m <= r:20.
 if arr[l] <= arr[m]:21.
 temp[k] = arr[l]22.
 l += 123.
 else:24.
 temp[k] = arr[m]25.
 m += 126.
 k += 127.
 28.
 while l <= mid:29.
 temp[k] = arr[l]30.
 k += 131.
 l += 132.
 while m <= r:33.
 temp[k] = arr[m]34.
 k += 135.
 m += 136.
 for i1 in range(i, j + 1):37.
 arr[i1] = temp[i1]38.
 print ("After Merge: " + str(arr[i:j + 1]))39.
 40.
if __name__ == '__main__':41.
 arr = [9, 4, 8, 3, 1, 2, 5]42.
 print ("Initial Array: " + str(arr))43.
 mergesort(arr, 0, len(arr) - 1)44.

Terminal Output:

Initial Array: [9, 4, 8, 3, 1, 2, 5]
Left: [9]
Right: [4]
After Merge: [4, 9]
Left: [8]
Right: [3]
After Merge: [3, 8]
Left: [4, 9]
Right: [3, 8]
After Merge: [3, 4, 8, 9]
Left: [1]
Right: [2]
After Merge: [1, 2]

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Left: [1, 2]
Right: [5]
After Merge: [1, 2, 5]
Left: [3, 4, 8, 9]
Right: [1, 2, 5]
After Merge: [1, 2, 3, 4, 5, 8, 9]

Quicksort

Developed by C.A.R Hoare in 1959
Like Merge SORT, Quicksort is a recursive Divide and Conquer algorithm
Standard version is not stable although stable versions do exist
Performance: worst case <m>n^2</m> (rare), average case <m>n log n</m>, best case <m>n log n</m>
Memory usage: O(<m>n</m>) (variants exist with O (n log n))
In practice it is one of the fastest known sorting algorithms, on average

Quicksort procedure

The main steps in Quick sort are:

Pivot selection: Pick an element, called a “pivot” from the array1.
Partioning: reorder the array elements with values < the pivot come beofre it, which all elements the values ≥ than2.
the pivot come after it. After this partioining, the pivot is in its final position.
Recursion: apply steps 1 and 2 above recursively to each of the two subarrays3.

The base case for the recursion is a subarray of length 1 or 0; by definition these cases do not need to be sorted.

Quicksort example

On overage quicksort runs in <m>n</m> log <m>n</m> but if it
consistently chooses bad pivots, its performance degrades to
<m>n^2</m>.
This happens if the pivot is consistently chosen so that all(or too many of)
the elements in the array are < the pivot or > than the pivot. (A classic
case is when the first or last element is chosen as a pivot and the data is
already sorted, or nearly sorted).
Some options for choosing the pivot:
Always pick the first elements as the pivot.
Always pick the last elements as the pivot.
Pick a random element as the pivot.
Pick the median element as the pivot.

Quick Sort Code

quick_sort.py

Quick Sort1.

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=30

2024/05/06 18:16 55/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

def printArray(arr):2.
 return (' '.join(str(i) for i in arr))3.
 4.
def quicksort(arr, i, j):5.
 if i < j:6.
 pos = partition(arr, i, j)7.
 quicksort(arr, i, pos - 1)8.
 quicksort(arr, pos + 1, j)9.
 10.
def partition(arr, i, j):11.
 #pivot = arr[j] # pivot on the last item12.
 pivot = arr[int(j/2)] # pivot on the median13.
 small = i - 114.
 for k in range(i, j):15.
 if arr[k] <= pivot:16.
 small += 117.
 swap(arr, k, small)18.
 19.
 swap(arr, j, small + 1)20.
 print ("Pivot = " + str(arr[small + 1]), " Arr = " + printArray(arr))21.
 return small + 122.
 23.
def swap(arr, i, j):24.
 arr[i], arr[j] = arr[j], arr[i]25.
 26.
if __name__ == '__main__':27.
 arr = [9, 4, 8, 3, 1, 2, 5]28.
 print (" Initial Array :",printArray(arr))29.
 quicksort(arr, 0, len(arr) - 1)30.

 Initial Array : 9 4 8 3 1 2 5
Pivot = 5 Arr = 4 3 1 2 5 9 8
Pivot = 2 Arr = 1 2 4 3 5 9 8
Pivot = 3 Arr = 1 2 3 4 5 9 8
Pivot = 8 Arr = 1 2 3 4 5 8 9

Non-comparison Sorts

“Comparison sorts” make no assumptions about the data and compare all elements against each other (majority of
sorting algortihms work in this way, including all sorting algorithms which we have discussed so far).
�(<m>n</m> log <m>n</m>) time is the ideal “worst-case” scenario for a comparison-based sort (i.e
�(<m>n</m> log <m>n</m>)) is the smallest penalty you can hope for in the worst case). Heapsort has this
behaviour.
<m>O(n)</m> time is possible if we make assumptions about the data and don't need to compare elements against
each other (i.e., we know that data falls into a certain range or has some distribution).
Example of non-comparison sorts including Counting sort, Bucket and Radix Sort.
<m>O(n)</m> clearly is the minimum sorting time possible, since we must examine every element at least once
(how can you sort an item you do not even examine?).

Counting Sort

Proposed by Harold H.Seward in 1954.
Counting Sort allows us to do something whihch seems impossible - sort a collection of items in (close to) linear time.
How is this possible? Several assumptions must be made about the types of input instances which the algorithms will
have to handle.

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

i.e assume an input of size <m>n</m>, where each item has a non-negative integer key, with a range of k(if using
zero-indexing, the keys are in the range [0,…,k-1])
Best-, worst- and average-case time complexity of n +k, space complexity is also n+k
The potential running time advantage comes at the cost of having an algorithm which is not a widely applicable as
comparison sorts.
Counting sort is stable(if implemented in the correct way!)

Counting Sort procedure

Determine key range k in the input array(if not already known)
Initialise an array count size k, which will be used to count the number of times that each key value appears in the
input instance.
Initialise an array result of size n, which will be used to store the sorted output.
Iterate through the input array, and record the number of times each distinct key values occurs in the input instance.
Construct the sorted result array, based on the histogram of key frequencies stored in count. Refer to the ordering of
keys in input to ensure that stability is preserved.

Counting Sort example

Counting Sort Code

counting_sort.py

Counting sort1.
def printArray(arr):2.
 return(' '.join(str(i) for i in arr))3.
 4.
 5.
def countingsort(arr):6.
 count = [0] * 11 # can store the count of positive numbers <= 107.
 N = len(arr)8.
 for i in range(0, N):9.
 count[arr[i]] += 110.
 for i in range(1, len(count)):11.
 count[i] += count[i - 1]12.
 print ("Counting Array :",13.
 printArray(count))14.
 output = [0] * N15.

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=32

2024/05/06 18:16 57/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

 for i in range(len(arr)):16.
 output[count[arr[i]] - 1] = arr[i]17.
 count[arr[i]] -= 118.
 print ("After Sorting :",19.
 printArray(output))20.
 21.
if __name__ == '__main__':22.
 arr = [10, 7, 3, 1, 9, 7, 4, 3]23.
 print ("Initial Array :",24.
 printArray(arr))25.
 countingsort(arr)26.

Initial Array : 10 7 3 1 9 7 4 3
Counting Array : 0 1 1 3 4 4 4 6 6 7 8
After Sorting : 1 3 3 4 7 7 9 10

Bucket Sort

Bucket sort is stable sort which works by distributing the elements of an array into a series of buckets. Each bucket is
then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sort
algorithm.
Bucket sort can be seen as generalization of counting osrt; in fact, if each bucket has size 1 then bucket sort
degenerates to counting sort.
Time complexity is <m>n^2</m> in the worst case, and <m>n</m>+k in the best and average cases(where k is
the number of buckets)
Worst case space complexity is �(<m>n</m> + k)
Bucket sort is useful when input values are uniformly distributed over a range e.g when sorting a large set of floating
point numbers which values are uniformly distributed between 0.0 and 1.0
Bucket Sort's performance degrades with clustering; if many values occur close together, they will all fall into a single
buckets and be sorted slowly.

Bucket Sort procedure

Set up an array of “Buckets”, which are initially empty
Iterate through the input array, placing each element into its correct buckets
Sort each non-empty bucket (using either a recursive call to bucket sort, or a different sorting algorithm e.g Insertion
Sort)
Visit the buckets in order, and place each elements back into its correct position.

Bucket Sort example

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

 2)

Hybrid Sorting Algorithms

A hybrid algorithm is one which combines two or more algorithms which are designed to solve the same
problem.
Either chooses one specific algorithms depending on the data and execution conditions, or switches between
different algorithms according to some rule set.
Hybrid algorithms aim to combine the desired features of each constituent algorithms, to achieve a better algorithm
in aggregate.
E.g The best versions of Quicksort perform better than either Heap Sort or Merge Sort on the vast majority of inputs.
However, Quicksort has poor worst-case running time (�(<m>n^2</m>)) and <m>O(n)</m> stack usage. By
comparison, both Heap sort and Merge Sort have �(<m>n log n</m>) worst-case running time, together with a stack
usage of �(1) for Heap Sort or <m>O(n)</m> for Merge Sort. Furthermore, Insertion Sort performs better than any of
these algorithms on small data sets.

Introsort

Hybrid sorting algorithms proposed by David Musser in 1997.
Variation of Quicksort which monitors the recursive depth of the standard Quicksort algorithm to ensure efficient
processing.
If the depth of the quicksort recursion exceeds <m>log n</m> levels, then Introsort switches to Heap sort instead.
Since both algorithms which it uses are comparison-based, IntroSort is also comparison-based.
Fast average- and worst-case performance i.e. <m>n log n</m>

Timsort

Hybrid sorting algorithm Implemented by Tim Peters in 2002 for use in the python language.
Derived from a combination of merge Sort and insertion sort, along with additional logic (including binary search)
Finds subsequences (runs) of the data that are already ordered, and uses that knowledge to sort the reminder more
efficiently, by merging an identified run with existing runs until certain criteria are fulfilled.
Used on the android platform, python(since 2.3) for arrays of primitive type in Java SE 7, and in the GNU Octave
software.

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

http://www.hdip-data-analytics.com/_detail/modules/screenshot_2019-03-29_at_12.25.17.png?id=modules%3A46887

2024/05/06 18:16 59/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Criteria Sorting algorithm
Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Conclusion

As we have seen, there are many different sorting algorithms, each of which has it own specific strengths and
weaknesses.
Comparison-based sorts are the most widely applicable; but are limited to <m>n log n</m> running time in the best
case
Non-Comparison sorts can achieve linear <m>n</m> running time in the best case, but are less flexible
Hybrid sorting algorithms allow us to leverage the strengths of two or more algorithms (e.g. Timsort = Merge sort +
insertion sort)
There is no single algorithm which is best for all input instances; therefore it is important to use what you know about
the expected input when choosing an algorithm.

Week 11 - Searching Algorithms

10_search_algorithms.pdf

Overview

The Search Problem
Performance of Search Algorithms
Types of Search Algorithms
Linear Search (& how to beat it)
Binary Search

The Search Problem

Searching is a fundamental operation in computing.
E.g. finding information on the web, looking up a bank account balance, finding a file or application on a PC, querying
a database…
The Search Problem relates to retrieving information from a data structure (e.g. Arrays, Linked Lists, Search Trees,
Hash Tables etc.).
Algorithms which solve the Search Problem are called Search Algorithms.
Includes algorithms which query a data structure, such as the SQL SELECT command.
Two fundamental queries about any collection C:

Existence: Does C contain a target element? Given a collection C, we often simply want to know whether the
collection already contains a given element t. The response to such a query is true if an element exists in the
collection that matches the desired target t, or false if this is not the case.
Associative lookup: Return information associated in collection C with a target key value k. A key is usually
associated with a complex structure called a value. The lookup retrieves or replaces this value.

A correct Search Algorithm should return true or the index of the requested key if it exists in the collection, or
-1/null/false if it does not exist in the collection.

http://www.hdip-data-analytics.com/_media/modules/46887/10_search_algorithms.pdf

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.

Performance of Search Algorithms

Ultimately the performance of a Search Algorithm is based on how many operations performed (elements the
algorithm inspects) as it processes a query (as we saw with Sorting Algorithms).
Constant <m>O(n)</m> time is the worst case for any (reasonable) searching algorithm – corresponds to inspecting
each element in a collection exactly once.
As we will see, sorting a collection of items according to a comparator function (some definition of “less than”) can
improve the performance of search queries.
However, there are costs associated with maintaining a sorted collection, especially for use cases where frequent
insertion or removal of keys/elements is expected.
Trade-off between cost of maintaining a sorted collection, and the increased performance which is possible because
of maintaining sorted data.
Worth pre-sorting the collection if it will be searched often.

Pre-sorted data

Several search operations become trivial when we can assume that a collection of items is sorted.
E.g. Consider a set of economic data, such as the salary paid to all employees of a company. Values such as the
minimum, maximum, median and quartile salaries may be retrieved from the data set in constant <m>O(1)</m>
time if the data is sorted.
Can also apply more advanced Search Algorithms when data is presorted.

Types of Search Algorithms

Linear: simple (naïve) search algorithm
Binary: better performance than Linear
Comparison: eliminate records based on comparisons of record keys
Digital: based on the properties of digits in record keys
Hash-based: maps keys to records based on a hashing function

As we saw with Sorting Algorithms, there is no universal best algorithm for every possible use case. The most appropriate
search algorithm often depends on the data structure being searched, but also on any a priori knowledge about the data.

Note: Only linear and binary covered in this module.

Linear Search

Linear Search (also known as Sequential Search) is the simplest Searching Algorithm; it is trivial to implement.
Brute-force approach to locate a single target value in a collection.
Begins at the first index, and inspects each element in turn until it finds the target value, or it has inspected all
elements in the collection.
It is an appropriate algorithm to use when we do not know whether input data is sorted beforehand, or when the
collection to be searched is small.
Linear Search does not make any assumptions about the contents of a collection; it places the fewest restrictions on
the type of elements which may be searched.
The only requirement is the presence of a match function (some definition of “equals”) to determine whether the
target element being searched for matches an element in the collection.
Perhaps you frequently need to locate an element in a collection that may or may not be ordered.
With no further knowledge about the information that might be in the collection, Linear Search gets the job done in a
brute-force manner.
It is the only search algorithm which may be used if the collection is accessible only through an iterator.

http://www.hdip-data-analytics.com/_media/resources/pdf/algorithms_in_a_nutshell_heineman_2nd_ed.pdf

2024/05/06 18:16 61/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Constant O(1) time in the best case, linear O(�) time in the average and worst cases. Assuming that it is equally likely
that the target value can be found at each array position, if the size of the input collection is doubled, the running
time should also approximately double.
Best case occurs when the element sought is at the first index, worst case occur when the element sought is at the
last index, average case occurs when the element sought is somewhere in the middle.
Constant space complexity.

Linear Search examples

Search the array a for the target value 7:

a[0] = 2; this is not the target value, so continue1.
a[1] = 1; this is not the target value, so continue2.
a[2] = 5; this is not the target value, so continue3.
a[3] = 4; this is not the target value, so continue4.
a[4] = 8; this is not the target value, so continue5.
a[5] = 7; this is the target value, so return index 56.

Search the array a for the target value 3:

a[0] = 2; this is not the target value, so continue1.
a[1] = 1; this is not the target value, so continue2.
a[2] = 5; this is not the target value, so continue3.
a[3] = 4; this is not the target value, so continue4.
a[4] = 8; this is not the target value, so continue5.
a[5] = 7; this is not the target value, so continue6.
a[6] = 9; this is not the target value, so continue7.
Iteration is complete. Target value was not found so return -18.

Linear Search in code

linear_search.py

Searching an element in a list/array in python1.
can be simply done using 'in' operator2.
Example:3.
if x in arr:4.
print arr.index(x)5.
 6.
If you want to implement Linear Search in python7.
 8.
Linearly search x in arr[]9.
If x is present then return its location10.
else return -111.
 12.
def search(arr, x):13.
 14.
 for i in range(len(arr)):15.
 16.
 if arr[i] == x:17.
 return i18.
 19.
 return -120.

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=34

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Binary Search

Linear Search has linear time complexity:
Time <m>n</m> if the item is not found
Time <m>n/2</m>, on average, if the item is found

If the array is sorted, faster searching is possible
How do we look up a name in a phone book, or a word in a dictionary?

Look somewhere in the middle
Compare what’s there with the target value that you are looking for
Decide which half of the remaining entries to look at
Repeat until you find the correct place
This is the Binary Search Algorithm

Better than linear running time is achievable only if the data is sorted in some way (i.e. given two index positions, i
and j, a[i] < a[j] if and only if i < j).
Binary Search delivers better performance than Linear Search because it starts with a collection whose elements are
already sorted.
Binary Search divides the sorted collection in half until the target value is found, or until it determines that the target
value does not exist in the collection.
Binary Search divides the collection approximately in half using whole integer division (i.e. 7/4 = 1, where the
remainder is disregarded).
Binary Search has logarithmic time complexity and constant space complexity.

Binary Search examples

Search the array a for the target value 7:

Middle index =(0+6)/2 = 3. a[3] = 6 < 7, so search in the right subarray1.
(indices left=4 to right=6)
Middle index =(4+6)/2 = 5. a[5] = 8 > 7, so search in the left subarray2.
(indices left=4 to right=4)
Middle index =(4+4)/2 = 4. a[4] = 7 = 7, so return index 43.

Search the array a for the target value 3:

Middle index =(0+6)/2 = 3. a[3] = 6 > 3, so search next in the left1.
subarray (indices left=0 to right=2)
Middle index =(0+2)/2 = 1. a[1] = 4 > 3, so search next in the left2.
subarray (indices left=0 to right=1)
Middle index =(0+1)/2 = 0. a[0] = 2 < 3, so search next in the right3.
subarray (indices left=0 to right=0)
Middle index =(0+0)/2 = 0. a[0] = 2 < 3. Now there is just one element4.
left in the partition (index 0) – this corresponds to one of two possible
base cases. Return -1 as this element is not the target value.

Iterative Binary Search in Code

iterative_binary_search.py

Iterative Binary Search Function1.
It returns location of x in given array arr if present,2.
else returns -13.
def binarySearch(arr, l, r, x):4.
 5.
 while l <= r:6.
 7.

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=35

2024/05/06 18:16 63/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

 mid = l + (r - l)/2;8.
 9.
 # Check if x is present at mid10.
 if arr[mid] == x:11.
 return mid12.
 13.
 # If x is greater, ignore left half14.
 elif arr[mid] < x:15.
 l = mid + 116.
 17.
 # If x is smaller, ignore right half18.
 else:19.
 r = mid - 120.
 21.
 # If we reach here, then the element was not present22.
 return -123.
 24.
 25.
Test array26.
arr = [2, 3, 4, 10, 40]27.
x = 1028.
 29.
Function call30.
result = binarySearch(arr, 0, len(arr)-1, x)31.
 32.
if result != -1:33.
 print "Element is present at index %d" % result34.
else:35.
 print "Element is not present in array"36.

Recursive Binary Search in Code

recursive_binary_search.py

Python Program for recursive binary search.1.
 2.
Returns index of x in arr if present, else -13.
def binarySearch (arr, l, r, x):4.
 5.
 # Check base case6.
 if r >= l:7.
 8.
 mid = l + (r - l)/29.
 10.
 # If element is present at the middle itself11.
 if arr[mid] == x:12.
 return mid13.
 14.
 # If element is smaller than mid, then it can only15.
 # be present in left subarray16.
 elif arr[mid] > x:17.
 return binarySearch(arr, l, mid-1, x)18.
 19.
 # Else the element can only be present in right subarray20.
 else:21.
 return binarySearch(arr, mid+1, r, x)22.
 23.

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=36

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

 else:24.
 # Element is not present in the array25.
 return -126.
 27.
Test array28.
arr = [2, 3, 4, 10, 40]29.
x = 1030.
 31.
Function call32.
result = binarySearch(arr, 0, len(arr)-1, x)33.
 34.
if result != -1:35.
 print "Element is present at index %d" % result36.
else:37.
 print "Element is not present in array"38.

Analysis of Binary Search

In Binary Search, we choose an index that cuts the remaining portion of the array in half
We repeat this until we either find the value we are looking for, or we reach a subarray of size 1
If we start with an array of <m>size n</m>, we can cut it in half <m>log_2 n</m> times
Hence, Binary Search has logarithmic <m>(log n)</m> time complexity in the worst and average cases, and
constant time complexity in the best case
For an array of size 1000, this is approx. 100 times faster than linear search (<m>2^10</m> ≈ 1000 when
neglecting constant factors)

Conclusion

Linear Search has linear time complexity
Binary Search has logarithmic time complexity
For large arrays, Binary Search is far more efficient than Linear Search
However, Binary Search requires that the array is sorted
If the array is sorted, Binary Search is

Approx. 100 times faster for an array of size 1000 (neglecting constants)
Approx. 50 000 times faster for an array of size 1 000 000 (neglecting constants)

Significant improvements like these are what make studying and analysing algorithms worthwhile

Week 12: Benchmarking

Benchmarking Algorithms in Python

Overview

Motivation for benchmarking
Time in Python
Benchmarking a single run
Benchmarking multiple statistical runs

2024/05/06 18:16 65/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Motivation for Benchmarking

Benchmarking or a posteriori analysis is an empirical method to compare the relative performance of algorithms
implementations.
Experimental (e.g running time) data may be used to validate theoretical or a priori analysis of algorithms
Various hardware and software factors such system architecture, CPU design, choice of Operating System,
background processes, energy saving and performance enhancing technologies etc. can effect running time.
Therefore it is prudent to conduct multiple statistical runs using the same experimental setup, to ensure that your set
of benchmarks are representative of the performance expected by an “average” user.

Time in Python

Dates and times in Python are presented as the number of seconds that have elapsed since midnight on January 1st
1970 (the “unix epoch”)
Each second since the Unix Epoch has a specific timestamp
Can import the time module in Python to work with dates and times

e.g start_time = time.time() # gets the current time in seconds
e.g 15555001605 is Thursday, 11 April 2019 16:53:25 in GMT

Benchmarking a single run

import time

#log the start time in seconds
start_time = time.time()

#call the function you want to be benchmarked

#log the start time in seconds
end_time = time.time()

#calculate the elapsed time
time_elapsed = end_time - start_time

Benchmarking multiple statistical runs

import time

num_runs = 10 # number of times to test the function
results = [] # array to store the results for each test

benchmark the function
for r in range(num_runs):
 # log the start time in seconds
 start_time = time.time()
 # call the function that you want to benchmark

 # log the end time in seconds
 end_time = time.time()

 # calculate the elapsed time
 time_elapsed = end_time - start_time

 results.append(time_elasped)

benchmark.py

http://www.hdip-data-analytics.com/_export/code/modules/46887?codeblock=39

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

from numpy.random import randint1.
from time import time2.
 3.
def Bubble_Sort(array):4.
 # your sort code5.
 sorted=array6.
 return sorted7.
 8.
def Merge_Sort(array):9.
 # your sort code10.
 sorted=array11.
 return sorted12.
 13.
def Counting_Sort(array):14.
 # your sort code15.
 sorted=array16.
 return sorted17.
 18.
def Quick_Sort(array):19.
 # your sort code20.
 sorted=array21.
 return sorted22.
 23.
def Timsort(array):24.
 # your sort code25.
 sorted=array26.
 return sorted27.
 28.
The actual names of your sort functions in your code somewhere, notice no quotes29.
sort_functions_list = [Bubble_Sort, Merge_Sort, Counting_Sort, Quick_Sort,30.
Timsort]
 31.
The prescribed array sizes to use in the benchmarking testst32.
for ArraySize in (100, 250, 500, 750, 1000, 1250, 2500, 3750, 5000, 6250, 7500,33.
8750, 10000):
 # create a randowm array of values to use in the tests below34.
 testArray = randint(1,ArraySize*2,ArraySize)35.
 # iterate throug the list of sort functions to call in the test36.
 for sort_type in sort_functions_list:37.
 # and test every function ten times38.
 for i in range(10):39.
 start=time()40.
 sort_type(testArray)41.
 stop=time()42.
 print('{} {} {} {}'.format(sort_type, ArraySize, i, (stop-start)*1000))43.
 44.

Useful References

Python 3 time documentation: https://docs.python.org/3/library/time.html

Python Date and Time Overview https://www.tutorialspoint.com/python/python_date_time.htm

Discussions of benchmarking issues in Python (advanced material)
https://www.peterbe.com/plog/how-to-do-performance-micro-benchmarks-in-python

https://docs.python.org/3/library/time.html
https://www.tutorialspoint.com/python/python_date_time.htm
https://www.peterbe.com/plog/how-to-do-performance-micro-benchmarks-in-python

2024/05/06 18:16 67/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Document Index

Table of Contents

46887 - Thinking with Algorithms
Module learning outcomes
Indicative Syllabus
External Resources & Further Reading

Week 1 - Introduction
01 Introduction
02 Review of Programming and Mathematical Concepts

Week 2 - Analysing Algorithms - Part 1
Analysing Algorithms - Part 1

Week 3 - Analysing Algorithms Part 2
Analysing Algorithms Part 2

Week 4 - Recursive Algorithms Part 1
Recursive Algorithms Part 1

Week 5 - Recursive Algorithms Part 2
Roadmap
Review of recursion
Rules for recursive algorithms
Factorials
Computing a factorial
Greatest common Divisor
Computing the greatest common divisor
Fibonacci series
Computing the nth Fibonacci number

Week 6 - Cryptography
Overview
Introduction to Cryptography
Cryptography (Problem Statement)
Cryptography (Some definitions)
Symmetric Cryptography
Symmetric Cryptography - Simple Example
Symmetric Cryptography - Examples continued...
Decryption Algorithm
Cryptography: Algorithms and keys
Cryptographic keys
Some limitations of Symmetric Cryptography
Cryptography: Key Distribution
Asymmetric Cryptography: Public Key Cryptography
Public Key Cryptography
A little bit of number theory
RSA Algorithm
RSA: A (simple) example
Decrypting 29,9,16,14
Next steps
To do W6

Week 8 - Sorting Algorithms Part 1
Overview
Sorting

Last update: 2020/06/20 14:39 modules:46887 http://www.hdip-data-analytics.com/modules/46887

http://www.hdip-data-analytics.com/ Printed on 2024/05/06 18:16

Timeline of sorting algorithms
Sorting
Conditions for sorting
Comparing items in a collection
Comparator functions
Inversions
Comparison sorts
Sort keys and satellite data
Desirable properties for sorting algorithms
Stability
Stable sort of flight information
Analysing sorting algorithms
Recap: orders of growth
Factors which influence running time
In-place sorting
Overview of sorting algorithms
Criteria for choosing a sorting algorithm

Week 9: Sorting Algorithms Part 2
Overview
Review of sorting
Overview of sorting algorithms
Comparison sorts
Bubble Sort
Bubble Sort procedure
Bubble Sort example
Bubble Sort in Code
Bubble Sort Example
Analysing Bubble Sort (worst case)
Selection Sort
Selection Sort procedure
Selection Sort example
Selection Sort in Code
Analysing Selection Sort
Insertion Sort
Insertion Sort procedure
Insertion Sort example
Insertion Sort in code
Analysing Insertion Sort
Comparison of Simple sorting algorithms
Criteria for choosing a sorting algorithm
Recap

Week 10: Sorting Algorithms Part 3
Overview
Overview of sorting algorithms
Merge sort
Merge Sort Example
Merge Sort in code
Quicksort
Quicksort procedure
Quicksort example
Quick Sort Code
Non-comparison Sorts
Counting Sort
Counting Sort procedure

2024/05/06 18:16 69/69 46887 - Thinking with Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Counting Sort example
Counting Sort Code
Bucket Sort
Bucket Sort procedure
Bucket Sort example
Hybrid Sorting Algorithms
Introsort
Timsort
Criteria for choosing a sorting algorithm
Conclusion

Week 11 - Searching Algorithms
Overview
The Search Problem
Performance of Search Algorithms
Pre-sorted data
Types of Search Algorithms
Linear Search
Linear Search examples
Linear Search in code
Binary Search
Binary Search examples
Iterative Binary Search in Code
Recursive Binary Search in Code
Analysis of Binary Search
Conclusion

Week 12: Benchmarking
Benchmarking Algorithms in Python

Document Index

1)

Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.
2)

https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucke
t+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01

From:
http://www.hdip-data-analytics.com/ - HDip Data Analytics

Permanent link:
http://www.hdip-data-analytics.com/modules/46887

Last update: 2020/06/20 14:39

https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucket+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01
https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucket+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01
http://www.hdip-data-analytics.com/
http://www.hdip-data-analytics.com/modules/46887

	46887 - Thinking with Algorithms
	Module learning outcomes
	Indicative Syllabus
	External Resources & Further Reading
	Websites:
	Videos:
	Books:
	Documentaries:
	Papers:

	Week 1 - Introduction
	01 Introduction
	02 Review of Programming and Mathematical Concepts
	Mathematical operators
	Order of operations - BEMDAS
	Exponents
	Variables
	Data Types
	Strongly and weak typed
	Common operators
	Functions
	Control structures
	Sequential
	Selection
	Iteration
	Data structure

	Week 2 - Analysing Algorithms - Part 1
	Analysing Algorithms - Part 1
	Roadmap
	Recap
	Features of a well-designed algorithm
	Efficiency
	Analysing efficiency
	Complexity
	Performance vs. complexity
	Comparing complexity
	Orders of magnitude
	Complexity families
	Evaluating complexity
	Best, average and worst cases

	Week 3 - Analysing Algorithms Part 2
	Analysing Algorithms Part 2
	Roadmap
	Review of complexity
	Comparing growth functions
	Best, worst and average cases
	Worst case
	Big O notation
	Formally
	Tightest upper bound
	Ω (omega) notation
	Θ (theta) notation
	Separating an algorithm and its implementation
	Evaluating complexity
	Passing an array to a method in Java and Python
	O(1) example
	Java Code
	Python Code

	O(n) example
	Java Code
	Python Code

	O(n^2) example
	Java Code
	Python Code

	Week 4 - Recursive Algorithms Part 1
	Recursive Algorithms Part 1
	Lecture Notes
	Socratica Third Part Video
	Code Summary from the video
	Roadmap
	Iteration and recursion
	Recursion
	Simple Recursion Program
	Java code
	Python code

	Recursion trace for the call count(0)
	Stacks
	Stacks and recursion
	Why use recursion?
	Recursion vs iteration
	Types of recursion
	Tail Recursions
	Infinite recursion
	Java code
	Pythoncode

	Circular Recursion
	Java code
	Python code

	Rules for receive algorithms
	Designing Recursive Algorithms
	Recap

	Week 5 - Recursive Algorithms Part 2
	Roadmap
	Review of recursion
	Rules for recursive algorithms
	Factorials
	Computing a factorial
	iterative implementation
	Recursive implementation

	Greatest common Divisor
	Computing the greatest common divisor
	iterative implementation
	Recursive implementation

	Fibonacci series
	Computing the nth Fibonacci number
	Iterative implementation
	Recursive implementation

	Week 6 - Cryptography
	Overview
	Introduction to Cryptography
	Cryptography (Problem Statement)
	Cryptography (Some definitions)
	Symmetric Cryptography
	Symmetric Cryptography - Simple Example
	Symmetric Cryptography - Examples continued...
	Decryption Algorithm
	Cryptography: Algorithms and keys
	Cryptographic keys
	Some limitations of Symmetric Cryptography
	Cryptography: Key Distribution
	Asymmetric Cryptography: Public Key Cryptography
	Public Key Cryptography
	A little bit of number theory
	RSA Algorithm
	RSA: A (simple) example
	Encrypting my "Plaintext" PIN: 2 3 4 5

	Decrypting 29,9,16,14
	Next steps
	To do W6

	Week 8 - Sorting Algorithms Part 1
	Overview
	Sorting
	Timeline of sorting algorithms
	Sorting
	Conditions for sorting
	Comparing items in a collection
	Comparator functions
	Inversions
	Comparison sorts
	Sort keys and satellite data
	Desirable properties for sorting algorithms
	Stability
	Stable sort of flight information
	Analysing sorting algorithms
	Recap: orders of growth
	Factors which influence running time
	In-place sorting
	Overview of sorting algorithms
	Criteria for choosing a sorting algorithm

	Week 9: Sorting Algorithms Part 2
	Overview
	Review of sorting
	Overview of sorting algorithms
	Comparison sorts
	Bubble Sort
	Bubble Sort procedure
	Bubble Sort example
	Bubble Sort in Code
	Bubble Sort Example
	Analysing Bubble Sort (worst case)
	Selection Sort
	Selection Sort procedure
	Selection Sort example
	Selection Sort in Code
	Analysing Selection Sort
	Insertion Sort
	Insertion Sort procedure
	Insertion Sort example
	Insertion Sort in code
	Analysing Insertion Sort
	Comparison of Simple sorting algorithms
	Criteria for choosing a sorting algorithm
	Recap

	Week 10: Sorting Algorithms Part 3
	Overview
	Overview of sorting algorithms
	Merge sort
	Merge Sort Example
	Merge Sort in code
	Quicksort
	Quicksort procedure
	Quicksort example
	Quick Sort Code
	Non-comparison Sorts
	Counting Sort
	Counting Sort procedure
	Counting Sort example
	Counting Sort Code
	Bucket Sort
	Bucket Sort procedure
	Bucket Sort example
	Hybrid Sorting Algorithms
	Introsort
	Timsort
	Criteria for choosing a sorting algorithm
	Conclusion

	Week 11 - Searching Algorithms
	Overview
	The Search Problem
	Performance of Search Algorithms
	Pre-sorted data
	Types of Search Algorithms
	Linear Search
	Linear Search examples
	Linear Search in code
	Binary Search
	Binary Search examples
	Iterative Binary Search in Code
	Recursive Binary Search in Code
	Analysis of Binary Search
	Conclusion

	Week 12: Benchmarking
	Benchmarking Algorithms in Python
	Overview
	Motivation for Benchmarking
	Time in Python
	Benchmarking a single run
	Benchmarking multiple statistical runs
	Useful References

	Document Index

