
2024/05/11 14:50 1/8 Week 11 - Searching Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

Week 11 - Searching Algorithms

10_search_algorithms.pdf

Overview

The Search Problem
Performance of Search Algorithms
Types of Search Algorithms
Linear Search (& how to beat it)
Binary Search

The Search Problem

Searching is a fundamental operation in computing.
E.g. finding information on the web, looking up a bank account balance, finding a file or application on a PC, querying
a database…
The Search Problem relates to retrieving information from a data structure (e.g. Arrays, Linked Lists, Search Trees,
Hash Tables etc.).
Algorithms which solve the Search Problem are called Search Algorithms.
Includes algorithms which query a data structure, such as the SQL SELECT command.
Two fundamental queries about any collection C:

Existence: Does C contain a target element? Given a collection C, we often simply want to know whether the
collection already contains a given element t. The response to such a query is true if an element exists in the
collection that matches the desired target t, or false if this is not the case.
Associative lookup: Return information associated in collection C with a target key value k. A key is usually
associated with a complex structure called a value. The lookup retrieves or replaces this value.

A correct Search Algorithm should return true or the index of the requested key if it exists in the collection, or
-1/null/false if it does not exist in the collection.

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.

Performance of Search Algorithms

Ultimately the performance of a Search Algorithm is based on how many operations performed (elements the
algorithm inspects) as it processes a query (as we saw with Sorting Algorithms).
Constant <m>O(n)</m> time is the worst case for any (reasonable) searching algorithm – corresponds to inspecting
each element in a collection exactly once.
As we will see, sorting a collection of items according to a comparator function (some definition of “less than”) can
improve the performance of search queries.
However, there are costs associated with maintaining a sorted collection, especially for use cases where frequent
insertion or removal of keys/elements is expected.
Trade-off between cost of maintaining a sorted collection, and the increased performance which is possible because
of maintaining sorted data.
Worth pre-sorting the collection if it will be searched often.

Pre-sorted data

Several search operations become trivial when we can assume that a collection of items is sorted.
E.g. Consider a set of economic data, such as the salary paid to all employees of a company. Values such as the

http://www.hdip-data-analytics.com/_media/modules/46887/10_search_algorithms.pdf
http://www.hdip-data-analytics.com/_media/resources/pdf/algorithms_in_a_nutshell_heineman_2nd_ed.pdf

Last update: 2020/06/20
14:39 modules:46887_searching http://www.hdip-data-analytics.com/modules/46887_searching

http://www.hdip-data-analytics.com/ Printed on 2024/05/11 14:50

minimum, maximum, median and quartile salaries may be retrieved from the data set in constant <m>O(1)</m>
time if the data is sorted.
Can also apply more advanced Search Algorithms when data is presorted.

Types of Search Algorithms

Linear: simple (naïve) search algorithm
Binary: better performance than Linear
Comparison: eliminate records based on comparisons of record keys
Digital: based on the properties of digits in record keys
Hash-based: maps keys to records based on a hashing function

As we saw with Sorting Algorithms, there is no universal best algorithm for every possible use case. The most appropriate
search algorithm often depends on the data structure being searched, but also on any a priori knowledge about the data.

Note: Only linear and binary covered in this module.

Linear Search

Linear Search (also known as Sequential Search) is the simplest Searching Algorithm; it is trivial to implement.
Brute-force approach to locate a single target value in a collection.
Begins at the first index, and inspects each element in turn until it finds the target value, or it has inspected all
elements in the collection.
It is an appropriate algorithm to use when we do not know whether input data is sorted beforehand, or when the
collection to be searched is small.
Linear Search does not make any assumptions about the contents of a collection; it places the fewest restrictions on
the type of elements which may be searched.
The only requirement is the presence of a match function (some definition of “equals”) to determine whether the
target element being searched for matches an element in the collection.
Perhaps you frequently need to locate an element in a collection that may or may not be ordered.
With no further knowledge about the information that might be in the collection, Linear Search gets the job done in a
brute-force manner.
It is the only search algorithm which may be used if the collection is accessible only through an iterator.
Constant O(1) time in the best case, linear O(�) time in the average and worst cases. Assuming that it is equally likely
that the target value can be found at each array position, if the size of the input collection is doubled, the running
time should also approximately double.
Best case occurs when the element sought is at the first index, worst case occur when the element sought is at the
last index, average case occurs when the element sought is somewhere in the middle.
Constant space complexity.

Linear Search examples

Search the array a for the target value 7:

a[0] = 2; this is not the target value, so continue1.
a[1] = 1; this is not the target value, so continue2.
a[2] = 5; this is not the target value, so continue3.
a[3] = 4; this is not the target value, so continue4.
a[4] = 8; this is not the target value, so continue5.
a[5] = 7; this is the target value, so return index 56.

Search the array a for the target value 3:

a[0] = 2; this is not the target value, so continue1.

2024/05/11 14:50 3/8 Week 11 - Searching Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

a[1] = 1; this is not the target value, so continue2.
a[2] = 5; this is not the target value, so continue3.
a[3] = 4; this is not the target value, so continue4.
a[4] = 8; this is not the target value, so continue5.
a[5] = 7; this is not the target value, so continue6.
a[6] = 9; this is not the target value, so continue7.
Iteration is complete. Target value was not found so return -18.

Linear Search in code

linear_search.py

Searching an element in a list/array in python1.
can be simply done using 'in' operator2.
Example:3.
if x in arr:4.
print arr.index(x)5.
 6.
If you want to implement Linear Search in python7.
 8.
Linearly search x in arr[]9.
If x is present then return its location10.
else return -111.
 12.
def search(arr, x):13.
 14.
 for i in range(len(arr)):15.
 16.
 if arr[i] == x:17.
 return i18.
 19.
 return -120.

Binary Search

Linear Search has linear time complexity:
Time <m>n</m> if the item is not found
Time <m>n/2</m>, on average, if the item is found

If the array is sorted, faster searching is possible
How do we look up a name in a phone book, or a word in a dictionary?

Look somewhere in the middle
Compare what’s there with the target value that you are looking for
Decide which half of the remaining entries to look at
Repeat until you find the correct place
This is the Binary Search Algorithm

Better than linear running time is achievable only if the data is sorted in some way (i.e. given two index positions, i
and j, a[i] < a[j] if and only if i < j).
Binary Search delivers better performance than Linear Search because it starts with a collection whose elements are
already sorted.
Binary Search divides the sorted collection in half until the target value is found, or until it determines that the target
value does not exist in the collection.
Binary Search divides the collection approximately in half using whole integer division (i.e. 7/4 = 1, where the
remainder is disregarded).
Binary Search has logarithmic time complexity and constant space complexity.

http://www.hdip-data-analytics.com/_export/code/modules/46887_searching?codeblock=0

Last update: 2020/06/20
14:39 modules:46887_searching http://www.hdip-data-analytics.com/modules/46887_searching

http://www.hdip-data-analytics.com/ Printed on 2024/05/11 14:50

Binary Search examples

Search the array a for the target value 7:

Middle index =(0+6)/2 = 3. a[3] = 6 < 7, so search in the right subarray1.
(indices left=4 to right=6)
Middle index =(4+6)/2 = 5. a[5] = 8 > 7, so search in the left subarray2.
(indices left=4 to right=4)
Middle index =(4+4)/2 = 4. a[4] = 7 = 7, so return index 43.

Search the array a for the target value 3:

Middle index =(0+6)/2 = 3. a[3] = 6 > 3, so search next in the left1.
subarray (indices left=0 to right=2)
Middle index =(0+2)/2 = 1. a[1] = 4 > 3, so search next in the left2.
subarray (indices left=0 to right=1)
Middle index =(0+1)/2 = 0. a[0] = 2 < 3, so search next in the right3.
subarray (indices left=0 to right=0)
Middle index =(0+0)/2 = 0. a[0] = 2 < 3. Now there is just one element4.
left in the partition (index 0) – this corresponds to one of two possible
base cases. Return -1 as this element is not the target value.

Iterative Binary Search in Code

iterative_binary_search.py

Iterative Binary Search Function1.
It returns location of x in given array arr if present,2.
else returns -13.
def binarySearch(arr, l, r, x):4.
 5.
 while l <= r:6.
 7.
 mid = l + (r - l)/2;8.
 9.
 # Check if x is present at mid10.
 if arr[mid] == x:11.
 return mid12.
 13.
 # If x is greater, ignore left half14.
 elif arr[mid] < x:15.
 l = mid + 116.
 17.
 # If x is smaller, ignore right half18.
 else:19.
 r = mid - 120.
 21.
 # If we reach here, then the element was not present22.
 return -123.
 24.
 25.
Test array26.
arr = [2, 3, 4, 10, 40]27.
x = 1028.
 29.
Function call30.

http://www.hdip-data-analytics.com/_export/code/modules/46887_searching?codeblock=1

2024/05/11 14:50 5/8 Week 11 - Searching Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

result = binarySearch(arr, 0, len(arr)-1, x)31.
 32.
if result != -1:33.
 print "Element is present at index %d" % result34.
else:35.
 print "Element is not present in array"36.

Recursive Binary Search in Code

recursive_binary_search.py

Python Program for recursive binary search.1.
 2.
Returns index of x in arr if present, else -13.
def binarySearch (arr, l, r, x):4.
 5.
 # Check base case6.
 if r >= l:7.
 8.
 mid = l + (r - l)/29.
 10.
 # If element is present at the middle itself11.
 if arr[mid] == x:12.
 return mid13.
 14.
 # If element is smaller than mid, then it can only15.
 # be present in left subarray16.
 elif arr[mid] > x:17.
 return binarySearch(arr, l, mid-1, x)18.
 19.
 # Else the element can only be present in right subarray20.
 else:21.
 return binarySearch(arr, mid+1, r, x)22.
 23.
 else:24.
 # Element is not present in the array25.
 return -126.
 27.
Test array28.
arr = [2, 3, 4, 10, 40]29.
x = 1030.
 31.
Function call32.
result = binarySearch(arr, 0, len(arr)-1, x)33.
 34.
if result != -1:35.
 print "Element is present at index %d" % result36.
else:37.
 print "Element is not present in array"38.

http://www.hdip-data-analytics.com/_export/code/modules/46887_searching?codeblock=2

Last update: 2020/06/20
14:39 modules:46887_searching http://www.hdip-data-analytics.com/modules/46887_searching

http://www.hdip-data-analytics.com/ Printed on 2024/05/11 14:50

Analysis of Binary Search

In Binary Search, we choose an index that cuts the remaining portion of the array in half
We repeat this until we either find the value we are looking for, or we reach a subarray of size 1
If we start with an array of <m>size n</m>, we can cut it in half <m>log_2 n</m> times
Hence, Binary Search has logarithmic <m>(log n)</m> time complexity in the worst and average cases, and
constant time complexity in the best case
For an array of size 1000, this is approx. 100 times faster than linear search (<m>2^10</m> ≈ 1000 when
neglecting constant factors)

Conclusion

Linear Search has linear time complexity
Binary Search has logarithmic time complexity
For large arrays, Binary Search is far more efficient than Linear Search
However, Binary Search requires that the array is sorted
If the array is sorted, Binary Search is

Approx. 100 times faster for an array of size 1000 (neglecting constants)
Approx. 50 000 times faster for an array of size 1 000 000 (neglecting constants)

Significant improvements like these are what make studying and analysing algorithms worthwhile

Week 12: Benchmarking

Benchmarking Algorithms in Python

Overview

Motivation for benchmarking
Time in Python
Benchmarking a single run
Benchmarking multiple statistical runs

Motivation for Benchmarking

Benchmarking or a posteriori analysis is an empirical method to compare the relative performance of algorithms
implementations.
Experimental (e.g running time) data may be used to validate theoretical or a priori analysis of algorithms
Various hardware and software factors such system architecture, CPU design, choice of Operating System,
background processes, energy saving and performance enhancing technologies etc. can effect running time.
Therefore it is prudent to conduct multiple statistical runs using the same experimental setup, to ensure that your set
of benchmarks are representative of the performance expected by an “average” user.

Time in Python

Dates and times in Python are presented as the number of seconds that have elapsed since midnight on January 1st
1970 (the “unix epoch”)
Each second since the Unix Epoch has a specific timestamp
Can import the time module in Python to work with dates and times

2024/05/11 14:50 7/8 Week 11 - Searching Algorithms

HDip Data Analytics - http://www.hdip-data-analytics.com/

e.g start_time = time.time() # gets the current time in seconds
e.g 15555001605 is Thursday, 11 April 2019 16:53:25 in GMT

Benchmarking a single run

import time

#log the start time in seconds
start_time = time.time()

#call the function you want to be benchmarked

#log the start time in seconds
end_time = time.time()

#calculate the elapsed time
time_elapsed = end_time - start_time

Benchmarking multiple statistical runs

import time

num_runs = 10 # number of times to test the function
results = [] # array to store the results for each test

benchmark the function
for r in range(num_runs):
 # log the start time in seconds
 start_time = time.time()
 # call the function that you want to benchmark

 # log the end time in seconds
 end_time = time.time()

 # calculate the elapsed time
 time_elapsed = end_time - start_time

 results.append(time_elasped)

benchmark.py

from numpy.random import randint1.
from time import time2.
 3.
def Bubble_Sort(array):4.
 # your sort code5.
 sorted=array6.
 return sorted7.
 8.
def Merge_Sort(array):9.
 # your sort code10.
 sorted=array11.
 return sorted12.
 13.
def Counting_Sort(array):14.
 # your sort code15.
 sorted=array16.
 return sorted17.

http://www.hdip-data-analytics.com/_export/code/modules/46887_searching?codeblock=5

Last update: 2020/06/20
14:39 modules:46887_searching http://www.hdip-data-analytics.com/modules/46887_searching

http://www.hdip-data-analytics.com/ Printed on 2024/05/11 14:50

 18.
def Quick_Sort(array):19.
 # your sort code20.
 sorted=array21.
 return sorted22.
 23.
def Timsort(array):24.
 # your sort code25.
 sorted=array26.
 return sorted27.
 28.
The actual names of your sort functions in your code somewhere, notice no quotes29.
sort_functions_list = [Bubble_Sort, Merge_Sort, Counting_Sort, Quick_Sort,30.
Timsort]
 31.
The prescribed array sizes to use in the benchmarking testst32.
for ArraySize in (100, 250, 500, 750, 1000, 1250, 2500, 3750, 5000, 6250, 7500,33.
8750, 10000):
 # create a randowm array of values to use in the tests below34.
 testArray = randint(1,ArraySize*2,ArraySize)35.
 # iterate throug the list of sort functions to call in the test36.
 for sort_type in sort_functions_list:37.
 # and test every function ten times38.
 for i in range(10):39.
 start=time()40.
 sort_type(testArray)41.
 stop=time()42.
 print('{} {} {} {}'.format(sort_type, ArraySize, i, (stop-start)*1000))43.
 44.

Useful References

Python 3 time documentation: https://docs.python.org/3/library/time.html

Python Date and Time Overview https://www.tutorialspoint.com/python/python_date_time.htm

Discussions of benchmarking issues in Python (advanced material)
https://www.peterbe.com/plog/how-to-do-performance-micro-benchmarks-in-python

From:
http://www.hdip-data-analytics.com/ - HDip Data Analytics

Permanent link:
http://www.hdip-data-analytics.com/modules/46887_searching

Last update: 2020/06/20 14:39

https://docs.python.org/3/library/time.html
https://www.tutorialspoint.com/python/python_date_time.htm
https://www.peterbe.com/plog/how-to-do-performance-micro-benchmarks-in-python
http://www.hdip-data-analytics.com/
http://www.hdip-data-analytics.com/modules/46887_searching

	Week 11 - Searching Algorithms
	Overview
	The Search Problem
	Performance of Search Algorithms
	Pre-sorted data
	Types of Search Algorithms
	Linear Search
	Linear Search examples
	Linear Search in code
	Binary Search
	Binary Search examples
	Iterative Binary Search in Code
	Recursive Binary Search in Code
	Analysis of Binary Search
	Conclusion

	Week 12: Benchmarking
	Benchmarking Algorithms in Python
	Overview
	Motivation for Benchmarking
	Time in Python
	Benchmarking a single run
	Benchmarking multiple statistical runs
	Useful References

